Page 7 of 12
Crystal Growth & Design
(1) Terech, P.; Weiss, R. G. Low Molecular Mass Gelators of
(24) Rajeev Kumar, V. R.; Sajini, V.; Sreeprasad, T. S.; Praveen V.
K.; Ajayaghosh, A.; Pradeep, T. Probing the Initial Stages of
Molecular Organization of Oligo(p-phenylenevinylene)
Assemblies with Monolayer Protected Gold Nanoparticles.
Chem. Asian J. 2009, 4, 840–848.
(25) Zhu, L.; Li, X.; Wu, S.; Nguyen, K. T.; Yan, H.; agren, H.;
Zhao, Y. Chirality Control for in Situ Preparation of Gold
Nanoparticle Superstructures Directed by a Coordinatable
Organogelator. J. Am. Chem. Soc. 2013, 135, 9174–9180.
(26) Biswas, P.; Ganguly, S.; Dastidar, P. Stimuli-Responsive
Metallogels for Synthesizing Ag Nanoparticles and Sensing
Hazardous Gases. Chem. Asian J. 2018, 13, 1914–1949.
Organic Liquids and the Properties of Their Gels. Chem.
Rev. 1997, 97, 3133–3160.
(2) Smith, D. K. Building Bridges. Nat. Chem. 2010, 2, 162–163.
(3) Draper, E. R.; Adams, D. J. How should multicomponent
supramolecular gels be characterised? Chem. Soc. Rev. 2018,
47, 3395–3405.
(4) Suzuki, M.; Hanabusa, K. L-Lysine-based low-molecular-
weight gelators. Chem. Soc. Rev. 2009, 38, 967–975.
(5) Segarra-Maset, M. D.; Nebot, V. J.; Miravet, J. F.; Escuder, B.
Control of molecular gelation by chemical stimuli. Chem.
Soc. Rev. 2013, 42, 7086–7098.
1
2
3
4
5
6
7
8
9
(6) Babu, S. S.; Praveen, V. K.; Ajayaghosh, A. Functional
π-Gelators and Their Applications. Chem. Rev. 2014, 114,
1973 –2129.
(7) Van Bommel, K. J. C.; Friggeri, A.; Shinkai, S. Organic
Templates for the Generation of Inorganic Materials.
Angew. Chem. Int. Ed. 2003, 42, 980–999.
(27) Adarsh, N. N.; Kumar, D. K.; Dastidar, P. Composites of
N,N’ -bis-(pyridyl) urea-dicarboxylic acid as new
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
hydrogelators—a
Tetrahedron 2007, 63, 7386–7396.
(28) Tu, T.; Fang, W.; Bao, X.; Li, X.; Dçtz, K. H. Visual Chiral
Recognition through Enantioselective Metallogel
crystal
engineering
approach.
(8) Majumder, J.; Dastidar, P. An Easy Access to Organic Salt-
Collapsing: Synthesis, Characterization, and Application of
Platinum–Steroid Low-Molecular-Mass Gelators. Angew.
Chem. Int. Ed. 2011, 50, 6601–6605.
Based
Stimuli-Responsive
and
Multifunctional
Supramolecular Hydrogels. Chem. Eur. J. 2016, 22, 9267–
9276.
(29) Li, J. L.; Liu, X. Y. Architecture of Supramolecular Soft
Functional Materials: From Understanding to Micro-
/Nanoscale Engineering. Adv. Funct. Mater. 2010, 20, 3196–
3216.
(30) Lan, Y.; Corradini, M. G.; Weiss, R. G.; Raghavan, S. R.;
Rogers, M. A. To gel or not to gel: correlating molecular
gelation with solvent parameters. Chem. Soc. Rev. 2015, 44,
6035–6058.
(31) James, S. L.; Lloyd, G. O.; Zhang, J. Supramolecular gels in
crystal engineering. CrystEngComm 2015, 17, 7976–7977.
(32) Dastidar, P. Supramolecular gelling agents: can they be
designed? Chem. Soc. Rev. 2008, 37, 2699–2715.
(33) Roy, R.; Parveen, R.; Sarkar, K.; Dastidar, P. Supramolecular
Synthon Approach in Designing Molecular Gels for
Advanced Therapeutics. Adv. Therap. 2018, 1800061
(34) Kumar, D. K.; Jose, D. A.; Dastidar, P.; Das, A.
Nonpolymeric Hydrogelators Derived from Trimesic
Amides. Chem. Mater. 2004, 16, 2332−2335.
(9) Bhattacharya, S.; Ghosh, Y. K. First report of phase selective
gelation of oil from oil/water mixtures. Possible
implications toward containing oil spills. Chem. Commun.
2001, 185–186.
(10) Carretti, E.; Bonini, M.; Dei, L.; Berrie, B. H. New Frontiers
in Materials Science for Art Conservation: Responsive Gels
and Beyond. Acc. Chem. 2010, 43, 751–760.
(11) Feringa, B. L.; de Jong, J. J. D.; Lucas, L. N.; Kellogg, R. M.;
van Esch, J. H. Reversible Optical Transcription of
Supramolecular Chirality into Molecular Chirality. Science
2004, 304, 278–281.
(12) Hirst, A. R.; Escuder, B.; Miravet, J. F.; Smith, D. K. High-
Tech Applications of Self-Assembling Supra-molecular
Nanostructured Gel-Phase Materials: From Regenerative
Medicine to Electronic Devices. Angew. Chem. Int. Ed.
2008, 47, 8002–8018.
(13) George, M.; Weiss, R. G. Molecular Organogels. Soft Matter
Comprised of Low-Molecular-Mass Organic Gelators and
Organic Liquids. Acc. Chem. Res. 2006, 39, 489–497.
(14) Xing, B.; Choi, M.-F.; Xu, B. A stable metal coordination
polymer gel based on a calix[4]arene and its ‘uptake’ of
non-ionic organic molecules from the aqueous phase.
Chem. Commun. 2002, 362–363.
(15) Steed, J. W. Anion-tuned supramolecular gels: a natural
evolution from urea supramolecular chemistry. Chem. Soc.
Rev. 2010, 39, 3686–3699.
(35) Kumar, D. K.; Jose, D. A.; Das, A.; Dastidar, P. First
snapshot of a nonpolymeric hydrogelator interacting with
its gelling solvents. Chem. Commun. 2005, 4059−4061.
(36) Kiyonaka, S.; Sada, K.; Yoshimura, I.; Shinkai, S.; Kato, N.;
Hamachi, I. Semi-wet peptide/protein array using
supramolecular hydrogel. Nat. Mater. 2004, 3, 58−64.
(37) Adarsh, N. N.; Sahoo, P.; Dastidar, P. Is a Crystal
Engineering Approach Useful in Designing Metallogels? A
Case Study. Cryst. Growth Des. 2010, 10, 4976−4986.
(16) Dastidar, P.; Ganguly, S.; Sarkar, K. Metallogels from
(38) Adarsh, N. N.; Dastidar, P.
CoordinationPolymer Based Metallogels Derived from Bis-
pyridyl-bis-amidenLigands: Crystal Engineering
Approach. Cryst. Growth Des. 2011, 11, 328−336.
A New Series of ZnII
Coordination
Complexes,
Organometallic,
and
Coordination Polymers. Chem. Asian J. 2016, 11, 2484–2498.
(17) Tam, A. Y.-Y.; Yam, V. W.-W. Recent advances in
metallogels. Chem. Soc. Rev. 2013, 42, 1540–1567.
(18) Feldner, T.; H-ring, M.; Saha, S.; Esquena, J.; Banerjee, R.;
Diaz, D. D. Supramolecular Metallogel That Imparts Self-
Healing Properties to Other Gel Networks. Chem. Mater.
2016, 28, 3210–3217.
(19) Byrne, P.; Lloyd, G. O.; Applegarth, L.; Anderson, K. M.;
Clarke, N.; Steed, J. W. Metal-induced gelation in dipyridyl
ureas. New J. Chem., 2010, 34, 2261–2274.
(20) Ljpez, D.; Guenet, J. M. Behavior of a Self-Assembling
Bicopper Complex in Organic Solutions. Macromolecules
2001, 34, 1076–1081.
(21) Ishi-i, T.; Iguchi, I. R.; Snip, E.; Ikeda, M.; Shinkai, S.
[60]Fullerene Can Reinforce the Organogel Structure of
Porphyrin-Appended Cholesterol Derivatives: Novel Odd-
Even Effect of the (CH2)n Spacer on the Organogel
Stability. Langmuir 2001, 17, 5825–5833.
(22) Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.;
Hanabusa, K.; Shirai, H.; Kobayashi, N. Fibrous Assemblies
Made of Amphiphilic Metallophthalocyanines. Langmuir
2000, 16, 2078–2082.
(23) Hanabusa, K.; Maesaka, Y.; Suzuki, M.; Kimura, M.; Shirai,
H. Low Molecular Weight Gelator Containing β-Diketon to
Ligands: Stabilization of Gels by Metal Coordination. Chem.
Lett. 2000, 29, 1168–1169.
A
(39) Lebel, O.; Perron, M.; Maris, T.; Zalzal, S. F.; Nanci, A.;
Wuest J. D. A New Class of Selective Low-Molecular-
Weight
Gelators
Based
on
Salts
of
Diaminotriazinecarboxylic Acids. Chem. Mater. 2006, 18,
3616−3626.
(40) Carpenter, L. J. Iodine in the Marine Boundary Layer.
Chem. Rev. 2003, 103, 4953−4962.
(41) Huang, R. J.; Hoffmann, T. Development of a Coupled
Diffusion Denuder System Combined with Gas
Chromatography/Mass Spectrometry for the Separation
and Quantification of Molecular Iodine and the Activated
Iodine Compounds Iodine Monochloride and Hypoiodous
Acid in the Marine Atmosphere. Anal. Chem. 2009, 81,
1777−1783.
(42) Smyth, PPA. The thyroid, iodine and breast cancer. Breast
Cancer Res. 2003, 5, 235-238.
(43) Rubinstein, I.; Gileadi, E. Measurement of electrical
conductivity in solid bromine and iodine. J. Electroanal.
Chem. 1980, 108, 191-201.
(44) Falaise, C.; Volkringer, C.; Facqueur, J.; Bousquet, T.;
Gasnot, L.; Loiseau, T. Capture of iodine in highly stable
metal–organic frameworks:
a systematic study. Chem.
Commun. 2013, 49, 10320−10322. (reference cited therein)
ACS Paragon Plus Environment