2
956
M. S. Markoulides, A. C. Regan / Tetrahedron Letters 52 (2011) 2954–2956
O
P
O
P
In summary, an efficient and flexible synthetic strategy has
OTMS
P
a
b, c
been developed for the synthesis of phosphinate analogues of the
anti-tumour agent hexadecylphosphocholine (miltefosine) 1, mak-
ing use of a radical hydrophosphinylation addition reaction of ter-
minal olefins to introduce the hydrophobic tail, in combination
with a Michael-type addition protocol using silyl phosphonites to
attach the hydrophilic polar head group. Overall, the synthesis of
(
)n
H
( )
n
CN
( )
n
OTMS
OH
OH
7
1
: (n = 15)
4: (n = 17)
17: (n = 15)
18: (n = 17)
12: (n = 15) 90%
19: (n = 17) 91%
d
+
+
phosphinate analogues 2 (C16, NMe
3
), 26 (C18, NMe
3
) and 28
+
(
C16, NH
3
) proceeded in six steps and 68–69% overall yields. By
O
P
O
suitable editing of the hydrophobic tail and the hydrophilic polar
head group, further nonhydrolysable analogues may be designed
in order to explore biological structure–activity relationships.
e
NH2
P
(
)
( )n
n
CN
OMe
OMe
2
2: (n = 15) 95%
20: (n = 15) 97%
21: (n = 17) 98%
Acknowledgments
23: (n = 17) 94%
We thank the University of Manchester and the A.G. Leventis
Foundation (Cyprus) for financial support, and Dr. C.I.F. Watt at
Manchester for valuable assistance and helpful discussions.
f
i
96%
O
O
P
P
N
NH3
Cl
(
)n
( )15
Supplementary data
OMe
OMe
27
I
2
2
4: (n = 15) 94%
5: (n = 17) 93%
Supplementary data (experimental procedures and character-
1
13
isation data for all new compounds along with copies of H,
C
3
1
g, h 95%
g, h
O
O
P
NH3
References and notes
(
)15
P
N
O
(
)n
1.
(a) Mollinedo, F. Expert Opin. Ther. Pat. 2007, 17, 385–405; (b) Vink, S. R.; van
Blitterswijk, W. J.; Schellens, J. H. M.; Verheij, M. Cancer Treat. Rev. 2007, 33,
O
2
8
191–202; (c) Eibl, H.; Unger, C. Cancer Treat. Rev. 1990, 17, 233–242.
2
2
: (n = 15) 97%
6: (n = 17) 96%
2.
Oberle, C.; Massing, U.; Krug, H. F. Biol. Chem. 2005, 386, 237–245.
3. (a) Jendrossek, V.; Handrick, R. Curr. Med. Chem. Anticancer Agents 2003, 3, 343–
53; (b) Ulbrich-Hofmann, R.; Lerchner, A.; Oblozinsky, M.; Bezakova, L.
3
Scheme 4. Reagents and conditions: (a) TMSCl, Et
3 2
N, CH Cl
2
, 0 °C to rt, 2–3 h; (b)
Biotechnol. Lett. 2005, 27, 535–544.
4
5
6
7
.
.
.
.
(a) Quin, L. D. A Guide to Organophosphorus Chemistry; John Wiley & Sons: New
York, 2000. pp 351–386; (b) Collinsova, M.; Jiracek, J. Curr. Med. Chem. 2000, 7,
acrylonitrile, 0 °C to rt, overnight; (c) 1 M HCl, 0 °C to rt, 1 h; (d) trimethyl
orthoformate, reflux, 3.5 days; (e) H (g), Raney-Ni (cat.), concd NH OH, MeOH,
5 °C, 1 atm, 2 h; (f) methyl iodide, anhydrous K CO , MeOH–CHCl , reflux, 4 days;
g) TMSI, CH Cl , rt, overnight; (h) MeOH, rt, 30 min; (i) concd HCl, EtOAc, rt,
2
4
6
29–647.
(a) Nifant’ev, E. E.; Koroteev, M. P. J. Gen. Chem. USSR (Engl. Trans.) 1967, 37,
293–1297; (b) Nifant’ev, E. E.; Magdeeva, R. K.; Shchepet’eva, N. P. J. Gen.
5
(
2
3
3
2
2
1
1
0 min.
Chem. USSR (Engl. Trans.) 1980, 50, 1416–1423.
(a) Bhatacharya, A. K.; Thyagarman, G. Chem. Rev. 1981, 81, 415–430; (b)
Pudovik, A. N.; Arbuzov, B. A. J. Gen. Chem. USSR (Engl. Trans.) 1951, 21, 423–
,10a Ra-Ni/NaBH ,10b or H –Pd/C10c, proved
2 4 4 2
/NaBH
including CoCl
to be less efficient (40–50% yields). The primary amines 22 and
3 were then quaternised with excess MeI in the presence of anhy-
drous K CO . In addition, the primary amine 22 was converted to
428.
(a) Boyd, E. A.; James, K.; Regan, A. C. Tetrahedron Lett. 1992, 33, 813–816; (b)
Boyd, E. A.; James, K.; Regan, A. C. Tetrahedron Lett. 1994, 35, 4223–4226.
Deprèle, S.; Montchamp, J. -L. J. Org. Chem. 2001, 66, 6745–6755.
2
8
9
.
.
2
3
(a) Nifant’ev, E. E.; Levitan, L. P. Zh. Obshch. Khim. 1965, 35, 758 (Chem. Abstr.
the hydrochloride salt 27 by treatment with concentrated HCl. This
was in order to provide—after de-esterification—a phosphinate
analogue 28 with modified hydrophilic polar head group, for bio-
logical testing.
Finally, de-esterification of methyl phosphinate esters 24, 25,
and 27 was achieved with iodotrimethylsilane (TMSI)11 followed
by methanolysis, to afford the ammonium phosphinate inner salts
1965, 63, 23689); (b) Fitch, S. J. J. Am. Chem. Soc. 1964, 86, 61–64.
10. (a) Santos, W. L.; Heasley, B. H.; Jarosz, R.; Carter, K. M.; Lynch, K. R.;
Macdonald, T. L. Bioorg. Med. Chem. Lett. 2004, 14, 3473–3476; (b) Pimentel, L.
C. F.; de Souza, A. L. F.; Fernández, T. L.; Wardell, J. L.; Antunes, O. A. C.
Tetrahedron Lett. 2007, 48, 831–833; (c) Watson, P. S.; Jiang, B.; Harrison, K.;
Asakawa, N.; Welch, P. K.; Covington, M.; Stowell, N. C.; Wadman, E. A.; Davies,
P.; Solomon, K. A.; Newton, R. C.; Trainor, G. L.; Friedman, S. M.; Decicco, C. P.;
Ko, S. S. Bioorg. Med. Chem. Lett. 2006, 16, 5695–5699.
11. Devreux, V.; Wiesner, J.; Jomaa, H.; van der Eycken, J.; van Calenbergh, S.
2, 26, and 28 in high yields.
Bioorg. Med. Chem. Lett. 2007, 17, 4920–4923.