ACCEPTED MANUSCRIPT
4
Journal of Molecular Liquids
[3] N. Adawiyah, M. Moniruzzaman, S. Hawatulaila, M. Goto,
Ionic liquids as a potential tool for drug delivery systems,
MedChemComm, 7 (2016) 1881-1897.
[4] J.L. Shamshina, P.S. Barber, R.D. Rogers, Ionic liquids in drug
delivery, Expert Opinion on Drug Delivery, 10 (2013) 1367-1381.
[5] A. Mirjafari, Ionic liquids syntheses via click chemistry:
Expeditious routes toward versatile functional materials, Chemical
Communications, (2018).
solvation of 6-methyl-2-thiouracil in aqueous co-solvent mixtures of
methanol, N-methyl-2-pyrrolidone, N,N-dimethyl formamide and
dimethylsulfoxide, The Journal of Chemical Thermodynamics, 121
(2018) 55-64.
[20] D. Font, M. Heras, J.M. Villalgordo, Solution- and Solid-Phase
Parallel Synthesis of 4-Alkoxy-Substituted Pyrimidines with High
Molecular Diversity, Journal of Combinatorial Chemistry, 5 (2003)
311-321.
[6] M. Smiglak, J.M. Pringle, X. Lu, L. Han, S. Zhang, H. Gao, D.R.
MacFarlane, R.D. Rogers, Ionic liquids for energy, materials, and
medicine, Chemical Communications, 50 (2014) 9228-9250.
[7] J.P. Hallett, T. Welton, Room-Temperature Ionic Liquids:
Solvents for Synthesis and Catalysis. 2, Chemical Reviews, 111
(2011) 3508-3576.
[8] T. Welton, Room-Temperature Ionic Liquids. Solvents for
Synthesis and Catalysis, Chemical Reviews, 99 (1999) 2071-2084.
[9] M.J. Earle, P.B. McCormac, K.R. Seddon, The first high yield
green route to a pharmaceutical in a room temperature ionic liquid,
Green Chemistry, 2 (2000) 261-262.
[10] M.C. Uzagare, Y.S. Sanghvi, M.M. Salunkhe, Application of
ionic liquid 1-methoxyethyl-3-methyl imidazolium methanesulfonate
in nucleoside chemistry, Green Chemistry, 5 (2003) 370-372.
[11] M. Moniruzzaman, Y. Tahara, M. Tamura, N. Kamiya, M.
Goto, Ionic liquid-assisted transdermal delivery of sparingly soluble
drugs, Chemical Communications, 46 (2010) 1452-1454.
[12] C.I. Melo, R. Bogel-Łukasik, M. Nunes da Ponte, E. Bogel-
Łukasik, Ammonium ionic liquids as green solvents for drugs, Fluid
Phase Equilibria, 338 (2013) 209-216.
[13] K.B. Smith, R.H. Bridson, G.A. Leeke, Solubilities of
Pharmaceutical Compounds in Ionic Liquids, Journal of Chemical &
Engineering Data, 56 (2011) 2039-2043.
[14] Y. Sahbaz, H.D. Williams, T.-H. Nguyen, J. Saunders, L. Ford,
S.A. Charman, P.J. Scammells, C.J.H. Porter, Transformation of
Poorly Water-Soluble Drugs into Lipophilic Ionic Liquids Enhances
Oral Drug Exposure from Lipid Based Formulations, Molecular
Pharmaceutics, 12 (2015) 1980-1991.
[15] R. Zirbs, K. Strassl, P. Gaertner, C. Schroder, K. Bica,
Exploring ionic liquid-biomass interactions: towards the improved
isolation of shikimic acid from star anise pods, RSC Advances, 3
(2013) 26010-26016.
[21] F. Guibbal, S. Bénard, J. Patché, V. Meneyrol, J. Couprie, J.
Yong-Sang, O. Meilhac, E. Jestin, Regioselectivity of thiouracil
alkylation: Application to optimization of Darapladib synthesis,
Bioorganic & Medicinal Chemistry Letters, 28 (2018) 787-792.
[22] K. Wang, W. Xu, W. Zhang, M. Mo, Y. Wang, J. Shen, Triazole
derivatives: A series of Darapladib analogues as orally active Lp-
PLA2 inhibitors, Bioorganic & Medicinal Chemistry Letters, 23
(2013) 2897-2901.
[23] V. Lesch, A. Heuer, C. Holm, J. Smiatek, Solvent effects of 1-
ethyl-3-methylimidazolium acetate: solvation and dynamic behavior
of polar and apolar solutes, Physical Chemistry Chemical Physics, 17
(2015) 8480-8490.
[24] C.G. Hanke, N.A. Atamas, R.M. Lynden-Bell, Solvation of
small molecules in imidazolium ionic liquids: a simulation study,
Green Chemistry, 4 (2002) 107-111.
[25] R.S. Payal, K.K. Bejagam, A. Mondal, S. Balasubramanian,
Dissolution of Cellulose in Room Temperature Ionic Liquids: Anion
Dependence, The Journal of Physical Chemistry B, 119 (2015) 1654-
1659.
[26] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for
main group thermochemistry, thermochemical kinetics, noncovalent
interactions, excited states, and transition elements: two new
functionals and systematic testing of four M06-class functionals and
12 other functionals, Theoretical Chemistry Accounts, 120 (2008)
215-241.
[27] Y. Liu, Q. Zhang, L.-H. Chen, H. Yang, W. Lu, X. Xie, F.-J.
Nan, Design and Synthesis of 2-Alkylpyrimidine-4,6-diol and 6-
Alkylpyridine-2,4-diol as Potent GPR84 Agonists, ACS Medicinal
Chemistry Letters, 7 (2016) 579-583.
[28] E. Bäuerlein, R. Keihl, Lipophilic thiourea and thiouracil as
inhibitors of oxidative phosphorylation, FEBS Letters, 61 (1976) 68-
71.
[16] Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J.L. Aceña, V.A.
Soloshonok, K. Izawa, H. Liu, Next Generation of Fluorine-
Containing Pharmaceuticals, Compounds Currently in Phase II–III
Clinical Trials of Major Pharmaceutical Companies: New Structural
Trends and Therapeutic Areas, Chemical Reviews, 116 (2016) 422-
518.
[17] C. Laurence, M. J. El Ghomari, J.-Y. Le Questel, M. Berthelot,
R. Mokhlisse, Structure and molecular interactions of anti-thyroid
drugs. Part 3.1 Methimazole: a diiodine sponge, Journal of the
Chemical Society, Perkin Transactions 2, (1998) 1545-1552.
[18] E.R. Garrett, D.J. Weber, Metal complexes of thiouracils II:
Solubility analyses and spectrophotometric investigations, Journal of
Pharmaceutical Sciences, 60 (1971) 845-853.
[29] Crystallographic data for 3b: C17H30N2OS, Mr = 310.49, 0.40 x
0.05 x 0.05 mm, Monoclinic, P21/c, a = 24.8512(19) Å, b =
4.6661(3) Å, c = 16.1664(14) Å, β = 106.729(9)º, V = 1795.3(2) Å3,
Z = 4, ρcalcd = 1.149 gcm-3, µ = 0.182 mm-1, Mo-Kα radiation, λ =
0.71073Å, T = 180 K, 2θmax = 50.04º (-19 ≤ h ≤ 29, -3 ≤ k ≤ 5, -19 ≤
l ≤ 13), F(000) = 680, 6760 measured reflections, R1 = 0.0660 for
1839 reflections (I>2σ(I)), wR2 = 0.1442 for 3172 independent
reflections (all data) and 196 parameters, S = 1.023. CCDC 1828246
contains the supplementary crystallographic data.
[19] Y. Zhu, G. Chen, Y. Cong, A. Xu, A. Farajtabar, H. Zhao,
Equilibrium solubility, dissolution thermodynamics and preferential