Organic Letters
Letter
TCEP-induced reduction of disulfide will produce alkyltelluro
thiophenol which quenches peroxyl radicals by transfer of oxygen
to tellurium.18 Then, in a solvent cage, the resulting alkoxyl
radical will abstract a hydrogen atom from the thiophenol.
Recombination of thiyl radicals will follow, accompanied by
reduction of tetravalent tellurium (shown as a telluroxide) to
reform the disulfide antioxidant. In fact, it is known that
trivalent phosphorus compounds could act as reducing agents
toward telluroxides.22 No attempt was made to isolate
intermediates proposed in Scheme 4.
REFERENCES
■
(1) S−H and O−H BDEs given were estimated as described by
Bordwell and are based on a thermodynamic cycle which rely on pKa-
values for phenol/thiophenol and oxidation potentials of the
corresponding conjugate bases. These BDE-values are in excellent
agreement with experiment. (a) Bordwell, F. G.; Zhang, X.; Satish, A.
V.; Cheng, J.-P. J. Am. Chem. Soc. 1994, 116, 6605−6610. (b) Bordwell,
F. G.; Cheng, J. J. Am. Chem. Soc. 1991, 113, 1736−1743.
(2) Denisov, E.; Chatgilialoglu, C.; Shestakov, A.; Denisova, T. Int. J.
Chem. Kinet. 2009, 41, 284−293.
(3) Chenier, J. H. B.; Furimsky, E.; Howard, J. A. Can. J. Chem. 1974,
52, 3682−3688.
We were also curious to see the performance of our catalysts
in the presence of varying (0.0625, 0.125, 0.25, 0.5, and
1.0 mM) amounts of TCEP (Table S2 in the Supporting
Information). As shown in Figure 2, Tinh increased linearly with
(4) Chung, J.; Lee, H. S.; Chung, H. Y.; Yoon, T. R.; Kim, H. K.
Biotechnol. Lett. 2008, 30, 1553−1558.
(5) Park, S.; Sung, B.; Jang, E. J.; Kim, D. H.; Park, C. H.; Choi, Y. J.;
Ha, Y. M.; Kim, M. K.; Kim, N. D.; Yu, B. P.; Chung, H. Y. Arch.
Pharmacal Res. 2013, 36, 880−889.
(6) Kim, H. K.; Park, K. S.; Lee, J. S.; Kim, J. H.; Park, D. S.; Shin, J.;
Yoon, T. R. J. Cell. Biochem. 2012, 113, 1833−1841.
(7) Holler, T. P.; Hopkins, P. B. J. Am. Chem. Soc. 1988, 110, 4837−
4838.
(8) Zoete, V.; Bailly, F.; Catteau, J.; Bernier, J. J. Chem. Soc., Perkin
Trans. 1 1997, 2983−2988.
(9) Zoete, V.; Vezin, H.; Bailly, F.; Vergoten, G.; Catteau, J.; Bernier,
J. Free Radical Res. 2000, 32, 525−533.
(10) Marjanovic, B.; Simic, M. G.; Jovanovic, S. V. Free Radical Biol.
Med. 1995, 18, 679−685.
(11) Cheah, I. K.; Halliwell, B. Biochim. Biophys. Acta, Mol. Basis Dis.
2012, 1822, 784−793.
Figure 2. Inhibition time of compound 7c versus concentration of TCEP.
(12) Servillo, L.; Castaldo, D.; Casale, R.; D’Onofrio, N.; Giovane, A.;
Cautela, D.; Balestrieri, M. L. Free Radical Biol. Med. 2015, 79, 228−
236.
the concentration of the co-antioxidant. On the other hand, the
corresponding Rinh values decreased to reach a constant value
above 0.5 mM TCEP. Obviously, at the lower concentrations of
TCEP, the thiol concentration in the chlorobenzene phase is so
low that the peroxyl radicals cannot be efficiently quenched.
In conclusion, we have shown that (alkyltelluro)thiophenols
generated in situ in a lipid phase can quench peroxyl radicals
more efficiently than α-T. The tris(2-carboxyethyl)phosphine
used to bring about disulfide to thiol reduction has an
additional role: it reduces the telluroxide form of the catalyst to
the corresponding telluride and thus allows for antioxidant
regeneration and a catalytic mode of action. What makes these
antioxidants unique is the possibility to keep them turned off
under nonreducing conditions and, whenever needed, make
them come alive. It remains to be seen if this capability can be
exploited in biological systems.
(13) Hromatka, O.; Kirnig, I. Monatsh. Chem. 1954, 85, 235−240.
(14) Csallany, A.; Saari, A.; Draper, H. H. Int. J. Vitam. Nutr. Res.
1971, 41, 368−375.
(15) Gardner, D. V.; Howard, J. A.; Ingold, K. U. Can. J. Chem. 1964,
42, 2847−2851.
(16) Scott, T. W.; Liu, S. N. J. Phys. Chem. 1989, 93, 1393−1396.
(17) (a) Kumar, S.; Johansson, H.; Kanda, T.; Engman, L.; Muller,
̈
T.; Jonsson, M.; Pedulli, G. F.; Petrucci, S.; Valgimigli, L. Org. Lett.
2008, 10, 4895−4898. (b) Kumar, S.; Johansson, H.; Kanda, T.;
Engman, L.; Muller, T.; Bergenudd, H.; Jonsson, M.; Pedulli, G. F.;
̈
Amorati, R.; Valgimigli, L. J. Org. Chem. 2010, 75, 716−725.
(c) Johansson, H.; Shanks, D.; Engman, L.; Amorati, R.; Pedulli, G.
F.; Valgimigli, L. J. Org. Chem. 2010, 75, 7535−7541. (d) Singh, V. P.;
Poon, J.; Engman, L. J. Org. Chem. 2013, 78, 1478−1487. (e) Poon, J.;
Singh, V. P.; Engman, L. J. Org. Chem. 2013, 78, 6008−6015.
(f) Singh, V. P.; Poon, J.; Engman, L. Org. Lett. 2013, 15, 6274−6277.
(g) Poon, J.; Singh, V. P.; Yan, J.; Engman, L. Chem. - Eur. J. 2015, 21,
2447−2457.
ASSOCIATED CONTENT
* Supporting Information
■
S
́
(18) Amorati, R.; Valgimigli, L.; Diner, P.; Bakhtiari, K.; Saeedi, M.;
Engman, L. Chem. - Eur. J. 2013, 19, 7510−7522.
(19) Smith, K.; Lindsay, C. M.; Pritchard, G. J. J. Am. Chem. Soc.
1989, 111, 665−669.
The Supporting Information is available free of charge on the
Experimental section including spectral data for all
(20) Shanks, D.; Amorati, R.; Fumo, M. G.; Pedulli, G. F.; Valgimigli,
L.; Engman, L. J. Org. Chem. 2006, 71, 1033−1038.
(21) (a) Levison, M. E.; Josephson, A. S.; Kirschenbaum, D. M.
Experientia 1969, 25, 126−127. (b) Burns, J. A.; Butler, J. C.; Moran,
J.; Whitesides, G. M. J. Org. Chem. 1991, 56, 2648−2650.
(22) Oba, M.; Okada, Y.; Nishiyama, K.; Ando, W. Org. Lett. 2009,
11, 1879−1881.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The Swedish Research Council (621-2011-4006) and Carl
■
Tryggers Stiftelse for Vetenskaplig Forskning (CTS:120) are
̈
gratefully acknowledged for financial support.
D
Org. Lett. XXXX, XXX, XXX−XXX