Communication
Dalton Transactions
reveals that 1-im is an isoreticular structure of 1 (Fig. 2). As
expected, 1-im cannot catalyze β-boration reactions of 2-cyclo-
hexen-1-one under the same catalytic reaction conditions. The
above results clearly confirm that the in situ formed NHC-Cu(I)
chloride in MOF 1 is the vital factor correlating with its cata-
lytic activities. A possible mechanism for such NHC-Cu(I) cata-
lyzed β-boration of α,β-unsaturated carbonyl compounds is
7 X.-L. Lv, K. Wang, B. Wang, J. Su, X. Zou, Y. Xie, J.-R. Li and
H.-C. Zhou, J. Am. Chem. Soc., 2017, 139, 211.
8 (a) N. Marion and S. P. Nolan, Acc. Chem. Res., 2008, 41,
1440; (b) W. Duan, Z. Sun, Y. Huo, Y. Liu, G. Wu, R. Wang,
S. Wu, Q. Yao and S. Gong, Appl. Organomet. Chem., 2018,
32, e4444.
9 (a) J. Chun, I. G. Jung, H. J. Kim, M. Park, M. S. Lah and
S. U. Son, Inorg. Chem., 2009, 48, 6353; (b) J. Chun,
H. S. Lee, I. G. Jung, S. W. Lee, H. J. Kim and S. U. Son,
Organometallics, 2010, 29, 1518; (c) A. Burgun, R. S. Crees,
M. L. Cole, C. J. Doonan and C. J. Sumby, Chem. Commun.,
2014, 50, 11760.
1
7
proposed based on Yun’s model (see S9 in ESI†).
In summary, a new functional azolium-containing ligand
has been assembled with copper nitrate to afford a MOF 1,
which possesses a 2D + 2D → 3D interpenetrated structure
with 1D channels decorated by in situ generated NHC-copper(I)
chloride units. MOF 1 as a heterogeneous catalyst presents 10 (a) J. Y. Lee, J. M. Roberts, O. K. Farha, A. A. Sarjeant,
excellent catalytic activity for β-boration of α,β-unsaturated car-
bonyl compounds, while isoreticular structure of 1 containing
only imidazolium moiety (1-im) does not. This work demon-
K. A. Scheidt and J. T. Hupp, Inorg. Chem., 2009, 48, 9971;
(b) J. M. Roberts, O. K. Farha, A. A. Sarjeant, J. T. Hupp and
K. A. Scheidt, Cryst. Growth Des., 2011, 11, 4747.
strates for the first time that heterogeneous catalysis by 11 (a) R. S. Crees, M. L. Cole, L. R. Hanton and C. J. Sumby,
NHC-Cu(I) chloride within MOFs is feasible. We expect that
MOFs bearing diverse NHC-metal species will be explored in
the future.
Inorg. Chem., 2010, 49, 1712; (b) G. Nickerl, A. Notzon,
M. Heitbaum, I. Senkovska, F. Glorius and S. Kaskel, Cryst.
Growth Des., 2013, 13, 198; (c) S. Sen, N. N. Nair,
T. Yamada, H. Kitagawa and P. K. Bharadwaj, J. Am. Chem.
Soc., 2012, 134, 19432; (d) S. Sen, S. Neogi, A. Aijaz, Q. Xu
and P. K. Bharadwaj, Inorg. Chem., 2014, 53, 7591;
Conflicts of interest
(e) S. Wang, Q. Yang, J. Zhang, X. Zhang, C. Zhao, L. Jiang
There are no conflicts to declare.
and C.-Y. Su, Inorg. Chem., 2013, 52, 4198; (f) J. Liang,
R.-P. Chen, X.-Y. Wang, T.-T. Liu, X.-S. Wang, Y.-B. Huang
and R. Cao, Chem. Sci., 2017, 8, 1570; (g) J. Liang, Y.-Q. Xie,
X.-S. Wang, Q. Wang, T.-T. Liu, Y.-B. Huang and R. Cao,
Chem. Commun., 2018, 54, 342.
Acknowledgements
This work is supported by Natural Science Foundation of 12 (a) R. Zhong, A. C. Lindhorst, F. J. Groche and F. E. Kühn,
China (21501086, 21471009, 21671093), Shandong Provincial
Natural Science Foundation (ZR2014BQ035, ZR2017MB052),
Chem. Rev., 2017, 117, 1970; (b) Y. Wang, D. Astruc and
A. S. Abd-El-Aziz, Chem. Soc. Rev., 2019, 48, 558.
National and the Scientific Research Foundation for the 13 (a) G.-Q. Kong, X. Xu, C. Zhou and C.-D. Wu, Chem.
Returned Overseas Chinese Scholars, State Education Ministry.
Yao and Duan also thank the financial supports from
Liaocheng University.
Commun., 2011, 47, 11005; (b) G.-Q. Kong, S. Ou, C. Zhou
and C.-D. Wu, J. Am. Chem. Soc., 2012, 134, 19851;
(c) C. I. Ezugwu, B. Mousavi, M. A. Asraf, Z. Luo and
F. Verpoort, J. Catal., 2016, 344, 445.
1
1
1
4 K. Oisaki, Q. Li, H. Furukawa, A. U. Czaja and O. M. Yaghi,
J. Am. Chem. Soc., 2010, 132, 9362.
5 C. I. Ezugwu, N. A. Kabir, M. Yusubov and F. Verpoort,
Coord. Chem. Rev., 2016, 307, 188.
6 (a) H. C. Brown, Organic Syntheses Via Boranes, John Wiley
Notes and references
‡
Crystal data for 1: orthorhombic, Pcan, a = 13.2144(15), b = 22.3311(11), c =
3
2
3.9725(12) Å, V = 7074.19 Å , T = 173 K, Z = 8. F(000) = 1801.7, GOF = 0.986, a
total of 7920 reflections were collected, of which 6175 were unique (Rint
=
&
Sons, New York, 1975; (b) B. S. L. Collins, C. M. Wilson,
E. L. Myers and V. K. Aggarwal, Angew. Chem., Int. Ed.,
017, 56, 11700.
1 2
0.0377). R (wR ) = 0.0587 (0.1754) for 259 parameters and 3534 reflections (I >
2σ(I)). CCDC 1572628.†
2
1
C. A. Trickett, A. Helal, B. A. Al-Maythalony, Z. H. Yamani, 17 S. Mun, J.-E. Lee and J. Yun, Org. Lett., 2006, 8, 4887.
K. E. Cordova and O. M. Yaghi, Nat. Rev. Mater., 2017, 2, 18 (a) Y. G. Lawson, M. J. Gerald Lesley, N. C. Norman,
1
7045.
J.-R. Li, R. J. Kuppler and H.-C. Zhou, Chem. Soc. Rev.,
009, 38, 1477.
A. Dhakshinamoorthy and H. Garcia, Chem. Soc. Rev., 2014,
3, 5750.
C. R. Rice and T. B. Marder, Chem. Commun., 1997, 2051;
(b) V. Lillo, M. J. Geier, S. A. Westcott and E. Fernandez,
Org. Biomol. Chem., 2009, 7, 4674; (c) S. W. Reilly,
G. Akurathi, H. K. Box, H. U. Valle, T. K. Hollis and
C. E. Webster, J. Organomet. Chem., 2016, 802, 32;
(d) H. Ito, H. Yamanaka, J.-I. Tateiwa and A. Hosomi,
Tetrahedron Lett., 2000, 41, 6821; (e) K. Takahashi,
T. Ishiyama and N. Miyaura, Chem. Lett., 2000, 29,
982.
2
3
2
4
4
5
6
T. Zhang and W. Lin, Chem. Soc. Rev., 2014, 43, 5982.
Z. Wang and S. M. Cohen, Chem. Soc. Rev., 2009, 38, 1477.
Q. Xia, Z. Li, C. Tan, Y. Liu, W. Gong and Y. Cui, J. Am.
Chem. Soc., 2017, 139, 8259.
Dalton Trans.
This journal is © The Royal Society of Chemistry 2019