Communication
ChemComm
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
J. R. Perkins, I. Diboun, B. H. Dessailly, J. G. Lees and C. Orengo,
Structure, 2010, 18, 1233–1243.
2
J. Yoo, T. S. Lee, B. Choi, M. J. Shon and T. Y. Yoon, J. Am. Chem.
Soc., 2016, 138, 14238–14241.
3
4
J. Qin and A. M. Gronenborn, FEBS J., 2014, 281, 1948–1949.
A. D. Thompson, A. Dugan, J. E. Gestwicki and A. K. Mapp, ACS
Chem. Biol., 2012, 7, 1311–1320.
5
(a) G. A. Korshunova, N. V. Sumbatyan, A. N. Topin and M. T. Mtchedlidze,
Mol. Biol., 2000, 34, 823–839; (b) F. Kotzyba-Hibert, I. Kapfer and
M. Goeldner, Angew. Chem., Int. Ed. Engl., 1995, 34, 1296–1312;
(
c) G. Dorm ´a n, H. Nakamura, A. Pulsipher and G. D. Prestwich, Chem.
Rev., 2016, 116, 15284–15398.
6 I. Hamachi, T. Nagase and S. Shinkai, J. Am. Chem. Soc., 2000, 122,
Fig. 4 2D-DIGE analysis of labelled proteins. After labelling with 3
(500 mM), azide-labelled proteins were visualized by the copper-free
click reaction with DBCO-Cy5 or DBCO-Cy3. Cy5-labelled proteins are
shown in red and Cy3-labelled proteins are shown in green. Identified
lactose-binding proteins (galectin-1 and galectin-3) by LC-MS/MS analysis
as indicated by white circles. * Green bands on the left are molecular
weight makers (140 kDa and 35 kDa). ** A spot (MW B 15 kDa, pI B 4)
labelled efficiently with Cy5 could not be identified by trypsin digestion and
LC-MS/MS.
12065–12066.
7
8
S. Cecioni, A. Imberty and S. Vidal, Chem. Rev., 2015, 115, 525–561.
K. G. Rice, O. A. Weisz, T. Barthel, R. T. Lee and Y. C. Lee, J. Biol.
Chem., 1990, 265, 18429–18434.
9
1
G. Lauc, R. T. Lee, J. Dumi ´c and Y. C. Lee, Glycobiology, 2000, 10, 357–364.
0 M. R. Lee, D. W. Jung, D. Williams and I. Shin, Org. Lett., 2005, 7, 5477–5480.
1 L. Ballell, M. Van Scherpenzeel, K. Buchalova, R. M. J. Liskamp and
R. J. Pieters, Org. Biomol. Chem., 2006, 4, 4387–4394.
1
1
1
2 K. Sakurai, Y. Hatai and A. Okada, Chem. Sci., 2016, 7, 702–706.
3 A. Wibowo, E. C. Peters and L. C. Hsieh-Wilson, J. Am. Chem. Soc.,
2
014, 136, 9528–9531.
identification of cellular endogenous lectins were achieved.
Endogenous galectin-1 and -3 (10 M KD values with lactose)
1
4 T. Rungrotmongkol, P. Yotmanee, N. Nunthaboot and S. Hannongbua,
Curr. Pharm. Des., 2011, 17, 1720–1739.
À3
were labelled and identified as cellular endogenous lactose- 15 M. Hashimoto and Y. Hatanaka, Eur. J. Org. Chem., 2008, 2513–2523.
1
1
1
6 K. Sakurai, Asian J. Org. Chem., 2015, 4, 116–126.
7 S. Sato and H. Nakamura, Angew. Chem., Int. Ed., 2013, 52, 8681–8684.
8 S. Sato, K. Morita and H. Nakamura, Bioconjugate Chem., 2015, 26,
250–256.
binding proteins by LC-MS/MS and Western blot. Furthermore,
the protein–protein interaction partners of galectin-3 were also
labelled and identified. These results suggest that the proximity
labelling of bead-binding proteins enables the detection
of ligand-binding proteins with weak affinity. Not only the
direct ligand-binding proteins, but also protein complex con-
taining ligand-binding proteins could be labelled on the bead
surface. This technique can be used to identify ligand-binding
proteins that are difficult to analyze by other conventional
affinity purification methods. Applications are not limited to
the identification of carbohydrate-binding proteins. By chan-
1
2
2
2
9 S. Sato, K. Hatano, M. Tsushima and H. Nakamura, Chem. Commun.,
2018, 54, 5871–5874.
0 M. Tsushima, S. Sato and H. Nakamura, Chem. Commun., 2017, 53,
4838–4841.
1 K. J. Neurohr, D. R. Bundle, N. M. Young and H. H. Mantsch, Eur.
J. Biochem., 1982, 310, 305–310.
2 The amount of immobilized compound on the beads used in Fig. 1,
À1
lane 7 was lactose: 3.8 nmol mg
2
beads, Ru/dcbpy complex:
À1
0.0 nmol mg beads. See Fig. S1 (ESI†).
23 R. Banerjee, K. Das, R. Ravishankar, K. Suguna, A. Surolia and
M. Vijayan, J. Mol. Biol., 1996, 259, 281–296.
ging the ligand part, various protein–ligand interactions can be 24 E. H. Yang, J. Rode, M. A. Howlader, M. Eckermann, J. T. Santos,
D. Hernandez Armada, R. Zheng, C. Zou and C. W. Cairo, PLoS One,
identified. We are now in a position to identify ligand-binding
proteins with weak affinity by this technique.
M. T. gratefully acknowledges the financial support from
JSPS (ID No. 18J21621). This work was partially supported
by Grants-in-Aid for ‘‘Grant-in-Aid for Young Scientists (A)
2017, 12, 1–17.
2
2
2
2
2
5 S. Jaiswal and K. K. Srivastava, Biochem. Biophys. Res. Commun.,
2018, 498, 884–890.
6 K. Fritsch, M. Mernberger, A. Nist, T. Stiewe, A. Brehm and R. Jacob,
BMC Cancer, 2016, 16, 1–10.
7 M. C. Miller, I. V. Nesmelova, D. Platt, A. Klyosov and K. H. Mayo,
Biochem. J., 2009, 421, 211–221.
8 J. Seetharaman, A. Kfanigsberg, R. Slaaby, H. Leffler, S. H. Barondes
and J. M. Rini, J. Biol. Chem., 1998, 273, 13047–13052.
9 D. Laaf, P. Bojarov ´a , H. Pelantov ´a , V. K ˇr en and L. Elling, Bioconjugate
Chem., 2017, 28, 2832–2840.
(15H05490 to S. Sato)’’, ‘‘Homeostatic regulation by various
types of cell death (15H01372 to S. Sato)’’, and ‘‘Chemistry for
Multimolecular Crowding Biosystems (18H04542 to H. Nakamura)’’
from MEXT, Japan.
13278 | Chem. Commun., 2019, 55, 13275--13278
This journal is ©The Royal Society of Chemistry 2019