Journal of the American Chemical Society
Page 6 of 7
(
2) (a) Pauling, L.; Corey, R. B.; Branson, H. R. Proc. Natl.
2
(17) Shifting of the alkyl group antiperiplanar to the N leaving
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Acad. Sci. U.S.A. 1951, 37, 205. (b) Pauling, L.; Corey, R. B. J.
Am. Chem. Soc. 1952, 74, 3964. (c) Corey, R. B.; Pauling, L.
Proc. Roy. Soc. B 1953, 141, 10.
group is favored according to: (a) Yao, L.; Aubé, J. J. Am. Chem.
Soc. 2007, 129, 2766. (b) Szostak, M.; Aubé, J. Org. Biomol.
Chem. 2011, 9, 27. (c) Gutierrez, O.; Aubé, J.; Tantillo, D. J. J.
Org. Chem. 2012, 77, 640.
(
3) For the most recent review about the synthesis and reactivi-
ty of bridged lactams see: Szostak, M.; Aubé, J. Chem. Rev.
3
(18) For BF etherate mediated Boyer-Schmidt-Aubé reactions
2
5
013, 113, 5701.
4) (a) Hall, H. K., Jr.; El-Shekeil, A. Chem. Rev. 1983, 83,
49−555. (b) Clayden, J. Nature 2012, 481, 274. (c) Aubé, J.
see: (a) Gracias, V.; Milligan, G. L.; Aubé, J. J. Am. Chem. Soc.
1995, 117, 8047. (b) Gracias, V.; Frank, K. E.; Milligan, G. L.;
Aubé, J. Tetrahedron 1997, 53, 16241. (c) Forsee, J. E.; Aubé,
J. J. Org. Chem. 1999, 64, 4381. (d) Smith, B. T.; Gracias, V.;
Aubé, J. J. Org. Chem. 2000, 65, 3771. (e) Desai, P.;
Schildknegt, K.; Agrios, K. A.; Mossman, C.; Milligan, G. L.;
Aubé, J. J. Am. Chem. Soc. 2000, 122, 7226. (f) Lertpibulpanya,
D.; Marsden, S. P. Org. Biomol. Chem. 2006, 4, 3498. (g) Shin-
de, M. V.; Ople, R. S.; Sangtani, E.; Gonnade, R.; Reddy, D. S.
Beilstein J. Org. Chem. 2015, 11, 1060.
(
Angew. Chem. Int. Ed. 2012, 51, 3063.
(5) For the definition of amide bond deformation see: Dunitz, J.
D.; Winkler, F. K. Acta Cryst. 1975, B31, 251.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
6) (a) Tani, K.; Stoltz, B. M. Nature 2006, 441, 731. (b) Ly, T.;
Krout, M.; Pham, D. K.; Tani, K.; Stoltz, B. M.; Julian, R. R. J.
Am. Chem. Soc. 2007, 129, 1864.
(
7) Komarov, I. V.; Yanik, S.; Ishchenko, A. Y.; Davies, J. E.;
Goodman, J. M.; Kirby, A. J. J. Am. Chem. Soc. 2015, 137,
(19) Bontempelli, G.; Seeber, R.; Zecchin, S.; Schiavon, G. J.
Electroanal. Chem. 1976, 73, 295.
9
26.
(8) Hall, H. K., Jr. J. Am. Chem. Soc. 1958, 80, 6412.
(9) Fuchs, J. R.; Funk, R. L. J. Am. Chem. Soc. 2004, 126,
068.
10) (a) Morgan, J.; Greenberg, A. J. Chem. Thermodynamics
014, 73, 206. (b) Szostak, R.; Aubé, J.; Szostak, M. Chem.
(20) A characteristic singlet at 9.28 ppm was observed in the
1
crude H-NMR spectrum (500 MHz, CD
3
CN).
5
2
(21) (a) Lehn, J.-M.; Franck-Neumann, M. J. Chem. Phys.
1965, 43, 1421. (b) Burgar, M. I.; St. Amour, T. E.; Fiat, D. J.
Phys. Chem. 1981, 85, 502.
(
Commun. 2015, 51, 6395. (c) Szostak, R.; Aubé, J.; Szostak, M.
J. Org. Chem. 2015, 80, 7905.
(
22) The calculated bond length for N-C(O) in 4!HBF4 is 1.613
Å, which is longer than in 4!BF3 (measured 1.526 Å and calcula-
(
11) Aubé, J.; Milligan, G. L. J. Am. Chem. Soc. 1991, 113,
8965.
(12) Cyclobutanone N,N-dimethylhydrazone was prepared ac-
ted 1.534 Å, respectively).
19
10
(
23) Unresolved coupling of F to B (I = 3) was observed as
well (a septet would be expected). However, the minor signal was
cording to: Mino, T.; Masuda, S.; Nishio, M.; Yamashita, M. J.
Org. Chem. 1997, 62, 2633.
(
to: Kuwabe, S.; Torraca, K. E.; Buchwald, S. L. J. Am. Chem.
Soc. 2001, 123, 12202.
(
-azido-2-iodoethane failed to give ketoazide 8 in one step, since
addition of the electrophile to the anion of 5 led to vigorous gas
evolution and immediate decomposition of the reaction mixture.
11
overlapping with the more intense peak originating from B cou-
pling (ca. 1/3 intensity of the major peak).
13) TBS protected 2-bromoethanol was prepared according
11
14
(24) The absence of B- N coupling is in line with heteronu-
clear NMR experiments on trimethylamine-boron trihalide com-
plexes: Hall Clippard, P.; Cooper Taylor, R. Inorg. Chem. 1969,
14) Alkylation of cyclobutanone N,N-dimethylhydrazone 5 with
8
, 2802.
25) The sum of the three bond path angles CCN, OCC and
OCN is 360°.
26) Nørskov-Lauritsen, L.; Bürgi, H.-B.; Hofmann, P.;
1
(
(
(
15) Neither gas evolution nor conversion was observed when
.5 equivalents of trifluoroacetic acid were used without any triflic
acid.
Schmidt, H. R. Helv. Chim. Acta. 1985, 68, 76.
(27) (a) Wiberg, K. B.; Laidig, K. E. J. Am. Chem. Soc. 1987,
09, 5935. (b) Greenberg, A.; Venanzi, C. A. J. Am. Chem. Soc.
993, 115, 6951.
1
1
1
(
16) Traces of the protected dimer and trimer of 9 were de-
tected by LC-MS in the crude reaction mixture (see the SI for the
spectra), which was an evidence for the polymerizability of 4.
Compare with reference (8).
ACS Paragon Plus Environment