COMMUNICATIONS
Table 4. Comparison of catalytic activities of 3 and Nafion SAC-13.
CCDC-165028 (6c). Copies of the data can be obtained free of
charge on application to CCDC, 12 Union Road, Cambridge
CB21EZ, UK (fax: (44)1223-336-033; e-mail: deposit@ccdc.cam.
ac.uk).
1
Reaction
3 [gmol
Yield
[%]
Nafion SAC-13
Yield
[%]
1
(mol% Tf2CH)]
[gmol
]
[11] In contrast, the 13C NMR signal (d 104.7) for C4 of BnLi was
observed at lower field than that of toluene (d 126.1). G. Vanermen,
S. Toppet, M. Van Beylen, P. Geerlings, J. Chem. Soc. Perkin Trans. 2
1986, 707.
[12] The frontier electron density was calculated to be twice the square of
the coefficient of the NLUMO. Analysis of the orbitals reveals that
the LUMO mainly participates in the unoccupied 2s orbital of the
lithium atom.
Eq. (3)
Eq. (4)
Eq. (4)
Eq. (5)
Eq. (6)
Eq. (7)
10 (1)
30 (3)
10 (1)
5 (0.5)
30 (3)
30 (3)
94
> 99
54
> 99
> 99
89
10
±
10
5
30
30
39
±
25
16
> 99
2
[13] Geometry optimizations were performed with Gaussian98 (Revisio-
nA.5), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E.
Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels,
K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R.
Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski,
G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V.
Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-
Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe,
P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M.
Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh,
PA, 1998.
(0.1 mol% Tf2CH units) was reused for acetalization [Eq. (5)]
more than ten times, and no loss of activity was observed for
the recovered catalyst.[21] This means that the turnover
number (TON) is greater than 10000 and the turnover
1
frequency (TOF) exceeds 1000 h .
In conclusion, a practical method for preparing a novel
carbon Brùnsted superacid 2 was developed and a resin-
bound strong Brùnsted acid 3 was obtained by para substi-
tution of the lithium salt of 2 with lithiated polystyrenes. To
the best of our knowledge, this is the first example of a highly
acidic heterogeneous Brùnsted acid catalyst that is effectively
swollen by nonpolar organic solvents, and its catalytic activity
is superior to that of Nafion SAC-13. Such superacids could
make a major contribution to green chemistry.
[14] The nucleophilic substitution reaction of pentafluorobenzenes C6F5X
with weakly deactivating, nonactivating, and activating X (H, Me,
CH(C6F5)2, halogens, CF3, etc.) is para-selective, while the reaction of
compounds with strongly deactivating X (O , NH2, etc.) is meta-
selective. L. S. Kobrina, Fluorine Chem. Rev. 1974, 7, 1.
Received: June 7, 2001 [Z17241]
[15] B. M. Rode, A. Engelbrecht, J. Z. Schantl, J. Prakt. Chem. (Leipzig)
1973, 253, 17.
Â
[16] a) M. J. Farrall, J. M. Frechet, J. Org. Chem. 1976, 41, 3877; b) R.
Santini, M. C. Griffith, M. Qi, Tetrahedron Lett. 1998, 39, 8951.
[17] Purchased from Tokyo Kasei Kogyo Co., Ltd.
[18] K. Ishihara, M. Kubota, H. Yamamoto, Synlett 1996, 265.
[1] G. A. Olah, P. S. Iyer, G. K. S. Prakash, Synthesis 1986, 513.
[2] a) S. Kobayashi, S. Nagayama, J. Org. Chem. 1996, 61, 2256; b) S.
Nagayama, S. Kobayashi, Angew. Chem. 2000, 112, 578; Angew.
Chem. Int. Ed. 2000, 39, 567, and references therein; c) S. Murata, R.
Noyari, Tetrahedron Lett. 1980, 21, 767.
Â
[19] Purchased from Aldrich. B. Török, I. Kiricsi, A. Molnar, G. A. Olah, J.
Catal. 2000, 193, 132.
[20] The aromatic polymer backbone of 3, which was prepared by
nucleophilic substitution at the active surface of 7, was inert to
electrophilic attack.
[21] Reaction conditions: 3 (0.1 mol%), benzylacetone (1 equiv), trimeth-
yl orthoformate (1.2 equiv), toluene, 08C, 1 ± 2 h. After the reaction,
the solution was decanted and the residual catalyst 3 was reused
without drying.
[3] A. Corma, Chem. Rev. 1995, 95, 559.
[4] a) J. B. Hendrickson, A. Giga, J. Wareing, J. Am. Chem. Soc. 1974, 96,
2275; b) R. Goumont, N. Faucher, G. Moutiers, M. Tordeux, C.
Wakselman, Synthesis 1997, 691; c) F. Eugene, B. Langlois, E. Laurent,
J. Fluorine Chem. 1994, 66, 301.
[5] A. R. Siedle, R. A. Newmark, L. H. Pignolet, R. D. Howells, J. Am.
Chem. Soc. 1984, 106, 1510.
[6] I. Leito, I. Kaljurand, I. A. Koppel, L. M. Yagupolskii, V. M. Vlasov, J.
Org. Chem. 1998, 63, 7868.
[7] I. A. Koppel, R. W. Taft, F. Anvia, S.-Z. Zhu, L.-Q. Hu, K.-S. Sung,
D. D. DesMarteau, L. M. Yagupolskii, Y. L. Yagupolskii, N. V.
Ignatꢁev, N. V. Kondratenko, A. Y. Volkonskii, V. M. Vlasov, R.
Notario, P.-C. Maria, J. Am. Chem. Soc. 1994, 116, 3047.
[8] To the best of our knowledge, there are only two reported methods for
the synthesis of 1:[9] the reaction of benzylmagnesium chloride with
triflyl fluoride and the photochemical reaction of phenyliodonium
bis(triflyl) methide with benzene give 1 in yields of 40 and 61%,
respectively.[9a,b] The former method requires gaseous triflyl fluoride
(b.p. 218C), which is not commercially available, as an electrophilic
triflyl source, while the latter requires a large amount of benzene as
solvent, and upon photochemical reaction with arenes bearing
electron-withdrawing groups such as fluorobenzene, no corresponding
arylbis(triflyl)methanes are formed.
[9] a) R. J. Koshar, R. A. Mitsch, J. Org. Chem. 1973, 38, 3358; b) S.-Z.
Zhu, Heteroat. Chem. 1994, 5, 9; c) S.-Z. Zhu, J. Fluorine Chem. 1993,
64, 47; d) According to Zhu,[9c] 1a can be prepared in 73% yield by the
pyrolysis of benzenediazonium bis(triflyl)methide. However, we
obtained the O-phenylation product PhO(CF3)S(O) CHTf in 71%
yield instead of 1a by following his procedure. K. Ishihara, A.
Hasegawa, H. Yamamoto, J. Fluorine Chem. 2000, 106, 139.
[10] Crystallographic data (excluding structure factors) for the structure
reported in this paper have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication no.
Angew. Chem. Int. Ed. 2001, 40, No. 21
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4021-4079 $ 17.50+.50/0
4079