154
R.J.D. Saldanha et al. / Journal of Molecular Structure 606 (2002) 147±154
CAT,showing the absence of phenothiazine sulfoxide
VI amongst the oxidation products [6,26].
tion of tricyclic neuroleptics and antidepressants,in: I.S.
Forrest,C.J. Carr,E. Usdin (Eds.),The Phenothiazines and
Structurally Related Drugs,Raven Press,New York,1974,
pp. 5±13.
The TLC analysis of the crude oxidation-reaction
mixture indicated the presence of ®ve to six products,
but they were not separated. Therefore,as observed in
the stoichiometry,more than two equivalents of the
oxidant were consumed. Experiments are presently
underway to separate the individual oxidation
products.
[
3] P.C. Huang,S. Gabay,Isolation and charcterization of
phenothiazine±copper complexes,in: I.S. Forrest,C.J. Carr,
E. Usdin (Eds.),The Phenothiazines and Structurally Related
Drugs,Raven Press,New York,1974,pp. 97±109.
4] J. Balsek,Die Pharozie 3 (1967) 129.
[
[
5] N.C. Wood,K.M. Nugent,Antimicrob. Agents Chemother. 27
(
1985) 692.
6] J.T. Kemp,P. Moore,G.R. Quick,J. Chem. Soc.,Perkin II
1980) 291.
[
[
(
4
. Conclusion
7] D.S. Mahadevappa,K.S. Rangappa,N.M. Made Gowda,B.T.
Gowda,J. Phys. Chem. 85 (1981) 3651.
The kinetic study involving the oxidation of CPH
and FPH by CAT in acidic buffer medium has led to
the following conclusions:
[8] D.S. Mahadevappa,K.S. Rangappa,N.M. Made Gowda,B.T.
Gowda,Int. J. Chem. Kinet. 14 (1982) 1183.
[
9] B.T. Gowda,D.S. Mahadevappa,J. Chem. Soc.,Perkin Trans.
II (1983) 323.
[
[
10] M.M. Campbell,G. Johnson,Chem. Rev. 78 (1978) 65.
11] N.M. Made Gowda,N.M. Trieff,G.J. Stanton,Appl. Environ.
Microbiol. (USA) 32 (1981) 469.
1
. the oxidation stoichimetries of the two NAPs deter-
mined under similar experimental conditions
differ: a mol-to-mol ratio of 1:4 for the CPH±
CAT reaction and a mol-to-mol ratio of 1:6 for
the FPH±CAT reaction;
[12] N.M. Made Gowda,N.M. Trieff,G.J. Stanton,Water
Research (UK) 20 (7) (1986) 817.
[
13] J.C. Morris,J.A. Salazar,M.A. Wineman,J. Amer. Chem.
Soc. 70 (1948) 2036.
2
. the oxidation of FPH occurs at a faster rate than
that of CPH,which is attributable to the electron-
withdrawing ability of the aromatic ring substi-
[
14] A. Findley,Practical Physical Chemistry,Longmans,London,
UK,1952,p. 268.
[15] G. Gomori,S.P. Colowick,N.O. Kaplan,Methods Enzymol. 1
1955) 138±146.
0
(
tuent,R ,in the NAP molecule;
[
16] H. Ramachandra,D.S. Mahadevappa,K.S. Rangappa,N.M.
Made Gowda,Int. J. Chem. Kinet. 29 (1997) 773.
3
4
. the two NAPs follow the same general reaction
mechanism as proposed in Scheme 1;
. the values of deprotonation constant, K ,of
[
17] R. Ramachandrappa,S.M. Puttaswamy,N.M. Mayanna,Made
Gowda,Int. J. Chem Kinet. 30 (1998) 407.
1
1
ArSO N H Cl determined from the oxidation of
2
[18] B.G. Pyrde,F.G. Soper,J. Chem. Soc. (1926) 1582.
19] E. Bishop,V.J. Jennings,Talanta 1 (1958) 197.
2
23
23
[
CPH (6.59 £ 10 M) and FPH (9.80 £ 10 M)
2
3
[20] S.S. Narayanan,V.R.S. Rao,Radio Chem. Acta. 32 (1983)
211.
agree with the reported value of 9.80 £ 10
M
0
21
(1/K K 102 M ) from other substrate oxida-
tions [20±22] supporting the proposed mechanism.
1
[
[
[
[
21] M. Subhashini,M. Subramanian,V.R.S. Rao,Talanta 32
1985) 1082.
(
22] Y.K. Gupta,Private Communication,Jodhpur University,
India,1988.
23] P.H. Sackett,J.S. Mayausky,T. Smith,S. Kalus,R.L.
McGreery,J. Med. Chem. 24 (1981) 1342.
24] N.M. Made Gowda,V.M.S. Ramanujam,N.M. Trieff,Micro-
chem. J. 25 (1980) 93.
References
[
[
1] C. Bodea,I. Silberg,Recent Advances in the Chemistry of
Phenothiazines: Advances in Heterocyclic Chemistry,vol. 9,
Academic Press,New York,1968,p. 321.
[25] Z. Sanicanin,A. Jurie,J. Tabakovie,N. Trinajstic,J. Org.
Chem. 52 (1987) 4053±4057.
[26] H.J. Shine,E.E. Mach,J. Org. Chem. 30 (1965) 2130±2139.
2] H. Fenner,EPR studies on the metabolism of biotransforma-