C O MMU N I C A T I O N S
cence emission was suppressed by complexation with HV, the
addition of DABCO led to recovery of the emission, indicating
DABCO competes with HV to kick it away from the cleft of 1
Scheme 1).14 Indeed, in the H NMR spectra, the HV’s signals
1
(
returned to their original positions upon addition of DABCO,
whereas DABCO’s signal appeared at -4.76 ppm.
In summary, we developed a novel dual-mode porphyrinic
receptor 1 that binds HV and DABCO in different manners. The
PET from 1 to HV was facilitated by complexation and suppressed
by substrate exchange with DABCO, and, thus, the supramolecular
control of the PET was achieved.
Figure 2. (a) Fluorescence emission spectra of 1 (1.5 µM) in the presence
of varying concentrations of HV (a-i; 0, 0.30, 0.60, 0.90, 1.2, 1.5, 2.5,
Acknowledgment. This work was supported by a grant from
the Iketani Science and Technology Foundation.
3
.0, 6.0 µM). (b) The fluorescence quenching profiles for 1‚HV, 2‚HV,
and 3‚HV systems monitored at 608 nm. The emission spectra were obtained
in CHCl3/DMSO (10/1, v/v) at 293 K. λex ) 562 nm.
Supporting Information Available: Synthetic procedure for 1
(PDF). This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(
1) (a) Deisenhofer, J.; Michel, H. Angew. Chem., Int. Ed. Engl. 1989, 28,
29. (b) Huber, R. Angew. Chem., Int. Ed. Engl. 1989, 28, 848.
8
(2) (a) Balzani, V.; Scandola, F. Supramolecular Photochemistry; Ellis
Horwood: London, 1991. (b) Wasielewski, M. R. Chem. ReV. 1992, 92,
4
35. (c) Osuka, A.; Nakajima, S.; Maruyama, K.; Mataga, N.; Asahi, T.;
Yamazaki, I.; Nishimura, Y.; Ohno, T.; Nozaki, K. J. Am. Chem. Soc.
1993, 115, 4577. (d) Kurreck, H.; Huber, M. Angew. Chem., Int. Ed. Engl.
995, 34, 849. (e) Wagner, R. W.; Lindsey, J. S.; Seth, J.; Palaniappan,
1
V.; Bocian, D. F. J. Am. Chem. Soc. 1996, 118, 3996. (f) Steinberg-Yfrach,
G.; Liddell, P. A.; Hung, S.-C.; Moore, A. L.; Gust, D.; Moore, T. A.
Nature 1997, 385, 239. (g) Uosaki, K.; Kondo, T.; Zhang, X.-Q.; Yanagida,
M. J. Am. Chem. Soc. 1997, 119, 8367. (h) Gust, D.; Moore, T. A.; Moore,
A. L. Acc. Chem. Res. 2001, 34, 40. (i) Imahori, H.; Norieda, H.; Yamada,
H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y.; Fukuzumi, S. J. Am. Chem.
Soc. 2001, 123, 100.
Figure 3. Fluorescence emission spectra of (a) 1, (b) 1 + HV (3.0 µM),
(
c) 1 + HV (3.0 µM) + DABCO (15 µM), and (d) 1 + DABCO (15 µM)
in CHCl3/DMSO (10/1, v/v) at 293 K. [1] ) 1.5 µM. λex ) 562 nm.
(
3) (a) Sessler, J. L.; Wang, B.; Harriman, A. J. Am. Chem. Soc. 1993, 115,
Scheme 1
10418. (b) Kuroda, Y.; Ito, M.; Sera, T.; Ogoshi, H. J. Am. Chem. Soc.
1
993, 115, 7003. (c) Hunter, C. A.; Shannon, R. J. Chem. Commun. 1996,
1
361. (d) Hayashi, T.; Ogoshi, H. Chem. Soc. ReV. 1997, 26, 355. (e)
Ward, M. D. Chem. Soc. ReV. 1997, 26, 365. (f) Hu, Y.-Z.; Takashima,
H.; Tsukiji, S.; Shinkai, S.; Nagamune, T.; Oishi, S.; Hamachi, I. Chem.-
Eur. J. 2000, 6, 1907. (g) Ikeda, A.; Hatano, T.; Shinkai, S.; Akiyama,
T.; Yamada, S. J. Am. Chem. Soc. 2001, 123, 4855.
4) (a) Aoyama, Y.; Asakawa, M.; Matsui, Y.; Ogoshi, T. J. Am. Chem. Soc.
1
(
991, 113, 6233. (b) Hayashi, T.; Miyahara, T.; Koide, N.; Kato, Y.;
Matsuda, H.; Ogoshi, H. J. Am. Chem. Soc. 1997, 119, 7281.
5) (a) Gunter, M. J.; Hockless, D. C. R.; Johnston, M. R.; Skelton, B. W.;
White, A. H. J. Am. Chem. Soc. 1994, 116, 4810. (b) Gunter, M. J.; Jeynes,
T. P.; Johnston, M. R.; Turner, P.; Chen, Z. J. Chem. Soc., Perkin Trans.
(
1
1998, 1945.
changes of 1 upon addition of HV are shown in Figure 2. As the
concentration of HV increased, the emission intensity of 1 was
reduced due to PET from the porphyrin to HV (Figure 2a).13 The
spectral changes finally reached a plateau, indicating that the
fluorescence quenching was induced by the complexation (Figure
(
6) (a) Tashiro, K.; Aida, T.; Zheng, J.-Y.; Kinbara, K.; Saigo, K.; Sakamoto,
S.; Yamaguchi, K. J. Am. Chem. Soc. 1999, 121, 9477. (b) Kubo, Y.;
Sugasaki, A.; Ikeda, M.; Sugiyasu, K.; Sonoda, K.; Ikeda, A.; Takeuchi,
M.; Shinkai, S. Org. Lett. 2002, 4, 925. (c) Guldi, D. M.; Ros, T. D.;
Braiuca, P.; Prato, M.; Alessio, E. J. Mater. Chem. 2002, 7, 2001.
7) Yagi, S.; Yonekura, I.; Awakura, M.; Ezoe, M.; Takagishi, T. Chem.
Commun. 2001, 557.
(
(
2b). Although 2 and 3 also exhibited fluorescence quenching upon
8) The stoichiometry was determined for 1‚HV by the molar ratio method
addition of HV, the quenching efficiency varied in the receptors.
The binding constant Kem for each receptor obtained from the
fluorescence spectral changes validly corresponded to Kabs (Table
using fluorescence emission spectroscopy and for 2‚HV and 3‚HV by
1
Job’s method using H NMR.
(
9) The binding constants were determined by the least-squares analyses of
the absorbance changes according to a 1:1 complexation model.
a
b
c
(
10) The complexation-induced shift of the protons H , H , and H is 0.92,
.34, and 1.64 ppm upfield, respectively, in the 1:1 mixture of 2 and HV
([2] ) [HV] ) 1.0 mM in CDCl /DMSO-d (10/1, v/v) at 293 K). In
1), and, therefore, the PET was exclusively facilitated by the
1
complexation. It is interesting that the increase in magnitude of
the binding constant led to the increase of the fluorescence
quenching efficiency. Although the details are not clear at this point,
the well-defined structure of 1 affording tight fixation of HV should
give rise to correct donor-acceptor orientation.
3
6
1
‚HV, the receptor-substrate association and dissociation was slow enough
to afford broadening signals of HV’s protons, although the upfield shifts
of H -H were observed.
a
c
(
(
(
11) ZnTTolP: [5,10,15,20-tetrakis(p-tolyl)porphyrinato]zinc(II).
12) Ong, W.; Gomez-Kaifer, M.; Kaifer, A. E. Org. Lett. 2002, 4, 1791.
13) PET from porphyrins to viologens have been well known: (a) Akins, D.
L.; Zhu, H.-R.; Guo, C. J. Phys. Chem. 1993, 97, 8681. (b) Hayashi, T.;
Takimura, T.; Ogoshi, H. J. Am. Chem. Soc. 1995, 117, 11606. (c)
Kaganer, E.; Joselevich, E.; Willner, I.; Chen, Z.; Gunter, M. J.; Gayness,
T. P.; Johnson, M. R. J. Phys. Chem. B 1998, 102, 1159.
The diarylurea linker also affords enough space between two
porphyrin rings to bind 1,4-diazabicyclo[2.2.2]octane (DABCO)
7
through two Zn-N coordination interactions. Thus, the inhibitory
14) The Kabs for 1‚DABCO was determined as 695 000 M- (error 8.4%).
1
(
control of the PET was examined by addition of DABCO to a
solution containing 1 and HV (Figure 3). Although the fluores-
JA0294717
J. AM. CHEM. SOC.
9
VOL. 125, NO. 14, 2003 4069