Please do not adjust margins
Dalton Transactions
Page 4 of 5
COMMUNICATION
Journal Name
Conflicts of interest
DOI: 10.1039/D0DT02138E
There are no conflicts to declare.
Notes and references
1.
2.
3.
D.-L. Long, E. Burkholder and L. Cronin, Chem. Soc. Rev, 2007, 36, 105-121.
A. Müller and P. Gouzerh, Chem. Soc. Rev, 2012, 41, 7431-7463.
T. Fehlner, J.-F. Halet and J.-Y. Saillard, Molecular Clusters: A Bridge to Solid-
State Chemistry, Cambridge University Press, Cambridge, 2007.
S.-S. Wang and G.-Y. Yang, Chem. Rev., 2015, 115, 4893-4962.
M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag Berlin
Heidelberg, New York, 1983.
4.
5.
6.
A. Proust, B. Matt, R. Villanneau, G. Guillemot, P. Gouzerh and G. Izzet,
Chem. Soc. Rev, 2012, 41, 7605-7622.
7.
8.
9.
P. Gouzerh and A. Proust, Chem. Rev., 1998, 98, 77-112.
Y.-F. Song and R. Tsunashima, Chem. Soc. Rev, 2012, 41, 7384-7402.
R. Liu, G. Zhang, H. Cao, S. Zhang, Y. Xie, A. Haider, U. Kortz, B. Chen, N. S.
Dalal, Y. Zhao, L. Zhi, C.-X. Wu, L.-K. Yan, Z. Su and B. Keita, Energy Environ,
Sci., 2016, 9, 1012-1023.
discipline: the valence band level of these hybrid materials
changed as a function of x in H3+xPMo12-xVxO40.
10.
B. Chakraborty, G. Gan-Or, M. Raula, E. Gadot and I. A. Weinstock, Nat.
Commun., 2018, 9, 4896.
POMs can act as an excellent electron reservoir and maintain
the structure well under reversible redox reactions. Therefore,
POMs should be ideal electron acceptors to combine with other
semiconductors for electron donor–acceptor system to improve
the separation efficiency of photogenerated carriers. Keggin
type POMs possess relatively more positive HOMO level and
less negative LUMO level, enable them to match with the less
positive VB edge potential and more negative CB edge potential
of CN. The charge transfer process is likely to undergo an
optimized mechanism of electron on the LUMO level of POMs
migrating to the VB of CN, providing a rational pathway for the
tunable energy band structure of POMs/CN hybrid complex.
The recyclability of Vx-CN is examined against typical oxidation
desulfurization reactions. V3-CN has shown the highest catalytic
efficiency catalyzing the target oxidative reaction (Fig. 5 and
Table S1†). The catalyst could be conveniently recycled through
centrifugation and reused in the next catalytic circles with on
obvious decreasing of their catalytic activity. In comparison,
carbon nitride itself cannot fully catalyse the oxidization of
sulfide (Fig. S12†), with a lower conversion rate of only 50% and
slower reaction rate than V3-CN nanosheets.
In summary, a new hybrid heterogeneous catalyst based on a
series of phosphovanadomolybdates and protonated carbon
nitride nanosheets have been successfully prepared via
electrostatic interaction, in which the immobilization of
H3+xPMo12-xVxO40 into CN not only exhibit excellent recyclability,
but also give rise to the enhancement of visible-light harvesting
and successfully reconstruct the band-gap structure of
semiconductor. The CB edge of Vx-CN shows increments along
with the expanding of the number of vanadium atoms in the
phosphovanadomolybdate. Given the above, if adding the
number of V atoms of phosphovanadomolybdates or modifying
the protonation process of CN, the CB can be promoted to HER
limit.
11.
12.
13.
14.
J. Xie, Y. Zhang, Y. Han and C. Li, ACS nano, 2016, 10, 5304-5313.
K. Suzuki, N. Mizuno and K. Yamaguchi, ACS Catal., 2018, 8, 10809-10825.
Y. Wang and I. A. Weinstock, Chem. Soc. Rev, 2012, 41, 7479-7496.
D. Ma, L. Liang, W. Chen, H. Liu and Y.-F. Song, Adv. Funct., 2013, 23, 6100-
6105.
C. Hadad, X. Ke, M. Carraro, A. Sartorel, C. Bittencourt, G. Van Tendeloo, M.
Bonchio, M. Quintana and M. Prato, Chem. Commun., 2014, 50, 885-887.
G. Modugno, Z. Syrgiannis, A. Bonasera, M. Carraro, G. Giancane, L. Valli, M.
Bonchio and M. Prato, Chem. Commun., 2014, 50, 4881-4883.
Y. Ji, L. Huang, J. Hu, C. Streb and Y.-F. Song, Energy Environ, Sci., 2015, 8,
776-789.
X.-H. Li, W.-L. Chen, H.-Q. Tan, F.-R. Li, J.-P. Li, Y.-G. Li and E.-B. Wang, ACS
Appl. Mater. Interf, 2019, 11, 37927-37938.
S. Chu, Y. Wang, Y. Guo, J. Feng, C. Wang, W. Luo, X. Fan and Z. Zou, ACS
Catal., 2013, 3, 912-919.
X.-H. Li, W.-L. Chen, P. He, T. Wang, D. Liu, Y.-W. Li, Y.-G. Li and E.-B. Wang,
Inorg. Chem. Front., 2019, 6, 3315-3326.
Y. Wang and I. A. Weinstock, Dalton Trans., 2010, 39, 6143-6152.
Y. Wang, O. Zeiri, M. Raula, B. Le Ouay, F. Stellacci and I. A. Weinstock, Nat.
Nanotechnol., 2017, 12, 170-176.
Y. Wang, M. Raula, Y. Wang, O. Zeiri, S. Chakraborty, G. Gan-Or, E. Gadot
and I. A. Weinstock, Angew. Chem. Int. Ed., 2017, 56, 7083-7087.
M. Zhang, J. Hao, A. Neyman, Y. Wang and I. A. Weinstock, Inorg. Chem.,
2017, 56, 2400-2408.
G. Mamba and A. K. Mishra, Appl. Catal. B, 2016, 198, 347-377.
G. A. Tsigdinos and C. J. Hallada, Inorg. Chem., 1968, 7, 437-441.
H. Hirao, D. Kumar, H. Chen, R. Neumann and S. Shaik, J. Phys. Chem. C, 2007,
111, 7711-7719.
I. Efremenko and R. Neumann, J Phys Chem A, 2011, 115, 4811-4826.
J. M. Cameron, D. J. Wales and G. N. Newton, Dalton Trans., 2018, 47, 5120-
5136.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
D. Xu, W.-L. Chen, J.-S. Li, X.-J. Sang, Y. Lu, Z.-M. Su and E.-B. Wang, J. Mater.
Chem. A, 2015, 3, 10174-10178.
Ł. Jarosiński, J. Pawlak and S. K. J. Al-Ani, Opt. Mater., 2019, 88, 667-673.
K. Gelderman, L. Lee and S. W. Donne, J. Chem. Educ,, 2007, 84, 685.
G. Zhang, Z.-A. Lan, L. Lin, S. Lin and X. Wang, Chem. Sci., 2016, 7, 3062-3066.
31.
32.
33.
The work is supported by the National Natural Science
Foundation of China (Nos. U1832220, 21961142018, and
51873067), the Natural Science Foundation of Guangdong
Province (No. 2018A030313503), and the Fundamental
Research Funds for the Central Universities (No. 2018JQ04).
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins