4
5
6
G. Condorelli, L. L. Costanzo, G. De Guidi, S. Giu†rida, P.
Miano, S. Sortino and A. Velardita, EPA News., 1996, 58, 60.
F. Bosca and M. A. Miranda, J. Photochem. Photobiol. B, 1998,
43, 1.
phenomena as proposed by Yang and coworkers;31,43 an
increase of the vibronic mixing between the p,p* and n,p*
states caused by the smaller energy gap accompanied by the
higher efficiency of the a-cleavage photoprocess. Since this
process in the CTAC micelles is expected to take place in a
deeper region than in the SDS micelles, the formation of the
photoproduct could also be favored by the fact that the
benzoyl radical intermediate may abstract hydrogen from the
surfactant, leading to the formation of the stable photo-
product. Similar processes have been reported in the liter-
ature, where an increase in the yield of aldehyde derivatives
formed through a-cleavage processes in the presence of suit-
able hydrogen donors has been observed.44 Nonetheless, the
increase in the photodegradation quantum yield of FB in
Symposium-in-print on drug photochemistry and phototoxicity:
Photochem. Photobiol., 1998, 68, 633.
7
8
J. H. Fendler, J. Phys. Chem., 1980, 84, 1485.
K. Kalyanasundaram, Photochemistry in Microheterogeneous
Systems, Academic Press, Orlando, FL, USA, 1987.
J. G. Lombardino, in Nonsteroidal Anti-inÑammatory Drugs, ed.
J. G. Lombardino, Wiley, New York, 1985, pp. 253È451.
9
10 K. D. Rainsford, C. Ying and D. OÏShaughnessy, Agents Actions,
1993, 39, 174.
11 G. De Guidi, L. L. Costanzo, G. Condorelli, S. Giu†rida, P.
Miano, S. Sortino and A. Velardita, Gazz. Chim. Ital., 1996, 126,
719.
12 G. De Guidi, R. Chillemi, L. L. Costanzo, S. Giu†rida S. Sortino
and G. Condorelli, J. Photochem. Photobiol. B, 1994, 23, 125.
13 G. Condorelli, L. L. Costanzo, G. De Guidi, S. Giu†rida and S.
Sortino, Photochem. Photobiol., 1995, 62, 155.
14 J. C. Scaiano, J. Am. Chem. Soc., 1980, 102, 7747.
15 J. C. Scaiano, M. Tanner and D. Weir, J. Am. Chem. Soc., 1985,
107, 4396.
16 I. Carmichael and G. L. Hug, J. Phys. Chem. Ref. Data, 1986, 15,
1.
CTAC micelles (Um B 1.2 ] 10~3) still compares well with
~FB
those reported for aryl alkyl ketones characterized by lowest
3p,p* states that are weakly mixed with upper 3n,p* states.44
In conclusion, this study has demonstrated that the photo-
reactivity of FB is mediated by its lowest excited triplet state
of p,p* nature and having an upper n,p* triplet as precursor.
The presence of the carbonyl substitutent promotes an
assisted intersystem crossing, resulting in high yields for triplet
population compared to biphenyl itself. The mixing between
the two low-lying triplets is modulated by solvent polarity and
plays a key role in the efficiency of singlet oxygen photoge-
neration. In light of the high quantum yield of this transient
species, a Type II photosensitization mechanism seems to be
the most relevant pathway to explain the phototoxic e†ect of
FB.
17 R. Schimdt, C. Tanielian, R. Dunsbach and C. Wol†, J. Photo-
chem. Photobiol. A, 1994, 79, 11.
18 P. J. Wagner, J. Am. Chem. Soc., 1967, 89, 2820.
19 P. J. Wagner, A. E. Kemppainen and H. N. Schott, J. Am. Chem.
Soc., 1973, 95, 5604.
20 Hyperchem package, Hypercube Inc., Waterloo, Canada, 1996.
21 G. Marconi and G. Orlandi, Croat. Chim. Acta., 1983, 56, 225.
22 S. Navaratnam and S. A. Jones, J. Photochem. Photobiol. A, 2000,
132, 175.
The formation of carbon-centered radicals results from an
inefficient cleavage process (Norrish Type I). The photo-
degradation of the drug can be altered by its incorporation
into micellar structures and depends on the nature of the sur-
factant. These Ðndings suggest that localization of the drug in
speciÐc regions of a biosubstrate with particular hydropho-
bicity and charge can lead to an increase in the photo-
degradation efficiency and, as a consequence, to an increase in
the formation of free radicals.
23 I. Carmichael and G. L. Hug, in Handbook of Organic Photo-
chemistry, ed. J. C. Scaiano, CRC Press, Boca Raton, FL, USA,
1989, vol. 1, pp. 369È404.
24 R. W. Redmond and S. E. Braslavsky, Chem. Phys. L ett., 1988,
148, 523.
25 A. P. Darmanyan and C. S. Foote, J. Phys. Chem., 1993, 97, 4573.
26 R. M. Hochstrasser and C. Marzzacco, in Molecular L umines-
cence, ed. E. C. Lim, W. A. Benjamin Publishing, New York,
1969, pp. 361È375.
27 N. J. Turro, Modern Molecular Photochemistry, The Benjamin/
Cummings Publishing Company, Menlo Park, CA, USA 1978,
pp. 528È538.
28 H. E. Zimmerman, Adv. Photochem., 1963, 1, 183.
29 D. I. Schuster, R. G. Underwood and T. P. Knundes, J. Am.
Chem. Soc., 1971, 93, 4304.
Acknowledgements
30 M. F. Mirbach, M. J. Mirbach, K. C. Liu and N. J. Turro, J.
Photochem., 1978, 8, 299.
Financial support from MURST ““CoÐnanziamento di Pro-
grammi di Ricerca di Rilevante Interesse NazionaleÏÏ
(Progetto: Meccanismi di Processi Fotoindotti in Sistemi
Organizzati) and from Istituto Superiore di Sanita (Progetto:
Proprieta Chimico-Fisiche dei Medicamenti e loro Sicurezza
dÏUso) are gratefully acknowledged. We are also thankful for
the Ðnancial support of the Department of Chemistry at
Union College. We wish to express our sincere thanks to Prof.
J. C. Scaiano of the University of Ottawa, where part of this
work was carried out while S. S. and L. J. M. were a visiting
researcher and a post-doc student, for the use of the time-
resolved spectroscopic apparatus and for his encouragement.
Special thanks are also due to Prof. G. Condorelli for his criti-
cal reading of the manuscript.
31 N. C. Yang and R. L. Dusenbery, J. Am. Chem. Soc., 1968, 90,
5899.
32 P. J. Wagner and R. A. Leavitt, J. Am. Chem. Soc., 1970, 92, 5806.
33 F. H. Quina and V. G. Toscano, J. Phys. Chem., 1977, 81, 1750.
34 N. J. Turro, M. Graetzel and A. M. Braun, Angew. Chem., Int.
Ed. Engl., 1980, 19, 675.
35 N. J. Turro and W. R. Cherry, J. Am. Chem. Soc., 1978, 100, 7431.
36 N. J. Turro and B. Kraeutler, J. Am. Chem. Soc., 1978, 100, 7432.
37 C. Bohne, R. W. Redmond and J. C. Scaiano, in Photochemistry
in Organized and Constrained Media, ed. V. Ramamurthy, VCH
Publishers, New York, 1991, pp. 79È131.
38 M. Almgren, F. Grieser and J. K. Thomas, J. Am. Chem. Soc.,
1979, 101, 279.
39 S. Sortino, G. De Guidi, S. Giu†rida, S. Fazio, G. Salemi and S.
Monti, Int. J. Photoenergy, 1999, 1, 19; S. Sortino, S. Giu†rida, S.
Fazio and S. Monti, New J. Chem., 2001, 25, 707.
40 J. C. Scaiano, E. B. Albuin and L. C. Stewart, J. Am. Chem. Soc.,
1982, 104, 5673.
41 L. J. Martinez and J. C. Scaiano, J. Phys. Chem., 1999, 103, 203.
42 R. Humphry-Baker, M. Gratzel and R. Steiger, J. Am. Chem.
Soc., 1980, 102, 847.
References
1
2
3
E. Kochevar, Arch. Dermatol., 1989, 125, 824.
43 N. C. Yang, D. S. McClure, S. L. Murov, J. J. Houser and R.
Dusenbery, J. Am. Chem. Soc., 1967, 89, 5466.
B. Ljunggren, Photodermatology, 1985, 2, 3.
B. Ljunggren and K. Lundberg, Photodermatology, 1985, 2, 377.
44 F. D. Lewis and J. G. Magyar, J. Org. Chem., 1972, 37, 2102.
980
New J. Chem., 2001, 25, 975È980