2348 J. Phys. Chem. B, Vol. 102, No. 13, 1998
Shantz and Lobo
3
1
approximately four Q per cage. The H NMR results indicate
that the silanol groups participate in hydrogen bonding with
M. E. J. Am. Chem. Soc. 1997, 119, 76. (c) Hong, S. B.; Cho, H. C.; Davis,
M. E. J. Phys. Chem. 1993, 97, 1622.
(6) (a) Burkett, S. L.; Davis, M. E. J. Phys. Chem. 1994, 98, 4647. (b)
3
7
the siloxy groups, consistent with the work of Koller et al.
Zones, S. I. Zeolites 1989, 9, 458. (c) Gies, H.; Marler, B. Zeolites 1992,
12, 42. (d) Lobo, R. F.; Zones, S. I.; Davis, M. E. J. Inclusion Phenom.
Mol. Recognit. Chem. 1995, 21, 47. (e) Zones, S. I.; Nakagawa, Y.; Yuen,
L. T.; Harris, T. V. J. Am. Chem. Soc. 1996, 118, 7558. (f) Burkett, S. L.;
Davis, M. E. Chem. Mater. 1995, 7, 1453.
On the basis of these results we can conclude that the defect
sites are in close proximity either as isolated pairs or larger
clusters. One unanswered question is whether the orientation
of the trimethylammonium group is correlated toward the defect
site. We are pursuing this issue using two-dimensional Si-
H correlation NMR spectroscopy.
(7) Flanigen, E. M.; Bennet, J. M.; Grose, R. W.; Cohen, J. P.; Patton,
2
9
R. L.; Kirchner, R. M.; Smith, J. V. Nature (London) 1978, 271, 512.
(8) Lawton, S. L.; Rohrbaugh, W. J. Science 1990, 247, 1319.
1
(9) Lobo, R. F.; Pan, M.; Chan, I. Y.; Li, H. X.; Medrud, R. C.; Zones,
Though nonasil is a model system, these results should hold
qualitatively for other all-silica materials. The lack of mobility
of the TMC3 molecule can only be attributed to electrostatic
interactions, which should be present in any all-silica zeolite
made with a cationic structure-directing agent. Extrapolation
to synthesis conditions must be done with some hesitation, but
there are clearly forces between the nonasil framework and the
structure-directing agent that cannot be overcome by the thermal
energy available at 370 K. These interactions could also be
present at synthesis conditions (433 K). Systems where a small
amount of boron or aluminum are used in the synthesis are more
complex. In addition to the cationic structure-directing agents
used, extraframework cations compete to balance the charge of
the aluminum/boron. If these organic-inorganic interactions
are stronger than inorganic (Al/B)-inorganic (Na, K, etc.)
interactions it may lead to selective incorporation of the
aluminum/boron in the framework in close proximity to the
charge on the structure-directing agent during the synthesis. This
would have important implications about the possibility of
tailoring the distribution of catalytically active sites in zeolites.
S. I.; Crozier, P.; Davis, M. E. Science 1993, 262, 1563.
(10) (a) Gies, H.; Marler, B.; Fyfe, C. A.; Kokotailo, G.; Feng, Y.; Cox,
D. E. J. Phys. Chem. Solids 1991, 52, 1235. (b) Lobo, R. F.; Pan, M.;
Chan, I.; Medrud, R. C.; Zones, S. I.; Crozier, P. A.; Davis, M. E. J. Phys.
Chem. 1994, 98, 12040. (c) Knops-Gerrits, P. P.; De Vos, D. E.; Peijen, E.
J. P.; Jacobs, P. A. Microporous Mater. 1997, 8, 3. (d) Engelhardt, G.;
Michel, D. High-Resolution Solid State NMR of Silicates and Zeolites;
Wiley: Chichester, 1987. (e) Davidson, A.; Weigel, S. J.; Bull, L. M.;
Cheetham, A. K. J. Phys. Chem. B 1997, 101, 3065. (f) Pan, M. Micron
1
996, 27, 319. (g) Terasaki, O.; Oshuna, T.; Ohnishi, N.; Hiraga, K. Curr.
Opin. Solid State Mater. Sci. 1997, 2, 14. (h) Thomas, J. M.; Vaughan, D.
E. W. J. Phys. Chem. Solids 1989, 50, 449.
(11) Marler, B.; Dehnbostel, N.; Eulert, H. H.; Gies, H.; Liebau, F. J.
Inclusion Phenom. 1986, 4, 339.
(12) Marler, B.; Gies, H. Zeolites 1995, 15, 517.
(
13) Harris, T. V.; Zones, S. I. Stud. Surf. Sci. Catal. 1994, 64, 29.
(14) Balkus, K. J. Jr.; Shepelev, S. Microporous Mater. 1993, 1, 383.
15) Behrens, P.; van de Goor, G.; Freyhardt, C. C. Angew. Chem., Int.
44
(
Ed. Engl. 1995, 34, 2680.
(16) van de Goor, G.; Freyhardt, C. C.; Behrens, P. Z. Anorg. Allg. Chem.
995, 621, 311.
1
(17) Gies, H. In Inclusion Compounds; Atwoord, J. L., Davies, J. E.
D., MacNicol D. D., Eds.; Oxford: New York, 1991; Vol. 5 (Inorganic and
Physical Aspects of Inclusion).
(18) Fyfe, C. A.; Mueller, K. T.; Kokotailo, G. T. In NMR Techniques
in Catalysis; Bell, A. T., Pines, A. Eds.; Marcel Dekker: New York, 1994.
(
19) Rohr-Schmidt, K.; Spiess, H. W. Multidimensional Solid-State NMR
Acknowledgment. We are grateful to the regents of the
ACS-PRF fund for financial support. The authors thank the
Department of Chemistry and Biochemistry at the University
of Delaware for use of the NMR spectrometer, C. Dybowski
for useful discussions about the NMR results, and R. Griffin
for use of the deuterium NMR line shape simulation programs.
The authors also thank S. Zones (Chevron) for help with the
nonasil synthesis and elemental analysis on the samples and E.
Gaffney and M. Feuerstein for help with the solid-state NMR
spectrometer.
and Polymers; Academic: London, 1994.
(20) (a) Klinowski, J.; Carpenter, T. A.; Thomas, J. M. J. Chem. Soc.,
Chem. Commun. 1986, 956. (b) Barron, P. F.; Frost, R. L.; Skjemstad, J.
O. J. Chem. Soc., Chem. Commun. 1983, 581. (c) Fyfe, C. A.; Wong-Moon,
K. C.; Huang, Y.; Grondey, H.; Mueller, K. T. J. Phys. Chem. 1995, 99,
8707. (d) Engelhardt, G.; Lohse, U.; Samoson, A.; Magi, M.; Tarmak, M.;
Lippma, E. Zeolites 1982, 2, 59. (e) Fyfe, C. A.; Grondey, H.; Feng, Y.;
Kokotailo, G. T.; Ernst, S.; Weitkamp, J. Zeolites 1992, 12, 50.
(21) (a) Hunger, M.; Engelhardt, G.; Koller, H.; Weitkamp, J. Solid State
Nucl. Magn. Reson. 1993, 2, 111. (b) Feuerstein, M.; Hunger, M.;
Englehardt, G.; Amoureux, J. P. Solid State Nucl. Magn. Reson. 1996, 7,
9
5. (c) Koller, H.; Burger, B.; Schneider, A. M.; Engelhardt, G.; Weitkamp,
J. Microporous Mater. 1995, 5, 219.
22) (a) Vega, A. J.; Luz, Z. J. Phys. Chem. 1986, 90, 4103. (b)
Kustanovich, I.; Luz, Z.; Vega, S.; Vega, A. J. J. Phys. Chem. 1990, 94,
138. (c) Eckman, R. A.; Vega, A. J. J. Phys. Chem. 1986, 90, 4679. (d)
Silbernagel, B. G.; Garcia, A. R.; Newsam, J. M.; Hulme, R. J. Phys. Chem.
(
Supporting Information Available: 13C liquid NMR spec-
trum of N,N,N-trimethylnorbornylammonium iodide with and
3
13
without deuterium â to the trimethylammonium group, C CP-
MAS NMR spectrum of TMC3-NON, SEM micrographs of
1
989, 93, 6506. (e) Vega, A. J.; Luz, Z. Zeolites 1988, 8, 19.
(23) Vold, R. R. In Nuclear Magnetic Resonance Probes of Molecular
Dynamics, Understanding Chemical ReactiVity; Tycko, R., Ed.; Kluwer:
London, 1994; Vol. 8.
(
(
2
TMC5-NON and TMC3-NON, H NMR spectra of the neat
2
structure-directing agents, H NMR line shape simulations with
24) Torchia, D. A.; Szabo, A. J. Magn. Reson. 1982, 49, 107.
25) Vold, R. R.; Vold, R. L. In AdVances in Magnetic and Optical
2
and without additional breathing motion, and the H NMR T1
results and simulations for the d9-TMC6 nonasil sample at 298
and 340 K (14 pages). Ordering information is given on any
current masthead page.
Resonance; Warren, W. S., Ed.; Academic: San Diego, 1991; Vol. 16.
(
26) Wittebort, R. J.; Olejniczak, E. T.; Griffin, R. G. J. Chem. Phys.
987, 86, 5411.
27) (a) Bull, L. M.; Henson, N. J.; Cheetham, A. K.; Newsam, J. M.;
1
(
Heyes S. J. J. Phys. Chem. 1993, 97, 11776. (b) Hepp, M. A.; Ramamurthy,
V.; Corbin, D. R.; Dybowski, C. R. J. Phys. Chem. 1992, 96, 2629. (c)
Auerbach, S. M.; Bull, L. M.; Henson, N. J.; Metiu, H. I.; Cheetham, A.
K. J. Phys. Chem. 1993, 100, 5923.
References and Notes
(1) (a) Darby, N. J Protein Structure; Oxford: New York, 1993. (b)
(
28) (a) Sidhu P. S.; Bell, J; Penner, G. H.; Jeffrey, K. R. Can. J. Chem.
Everett, D. H. Basic Principles of Colloidal Science; Royal Society of
Chemistry: London, 1988. (c) Philp, D.; Stoddart, J. F. Angew. Chem., Int.
Ed. Engl. 1996, 35, 1155.
1
1
995, 73, 2196. (b) Meirovitch, E.; Belsky, I.; Vega, S. J. Phys. Chem.
984, 88, 1522. (c) Ripmeester, J. A.; Ratcliffe, C. I. In Inclusion
Compounds; Oxford: New York, 1991; Vol. 5 (Inorganic and Physical
Aspects of Inclusion). (d) Meirovitch, E.; Belsky, I. J. Phys. Chem. 1984,
(
(
2) VanSanten, R. A.; Kramer, G. J. Chem. ReV. 1995, 15, 637.
3) (a) Barrer, R. M. Hydrothermal Chemistry of Zeolites; Academic
8
8, 4308. (e) Collins, M. J.; Ratcliffe, C. I.; Ripmeester, J. J. Phys. Chem.
Press: London, 1982. (b) Moscou, L. Stud. Surf. Sci. Catal. 1989, 58, 1.
c) Breck, D. W. Zeolite Molecular SieVes; Wiley: New York, 1974.
4) (a) Wei, J. Ind. Eng. Chem. Res. 1994, 33, 246. (b) Klein, H.; Fuess,
1990, 94, 157.
(
(
29) den Ouden, C. J. J.; Datema, K. P.; Visser, F.; Mackay, M.; Post,
M. F. M. Zeolites 1991, 11, 418.
30) All-silica material: No trivalent cations (B, Al, etc.) have been
(
H.; Schrimpf, G. J. Phys. Chem. 1996, 100, 11101. (c) Snurr, R. Q.; Bell,
A. T.; Theodorou, D. N. J. Phys. Chem. 1994, 98, 11948.
(
purposely added to the synthesis mixture.
(31) Brown, H. C.; Kim, K. W.; Srebnik, M.; Singaram, B. Tetrahedron
1987, 41, 4071.
(
5) (a) Kubota, Y.; Helmkamp, M. M.; Zones, S. I.; Davis, M. E.
Microporous Mater. 1993, 6, 213. (b) Hong, S. B.; Camblor, M. A.; Davis,