C O M M U N I C A T I O N S
Scheme 1
resolved even at low temperatures owing to a broadening of
resonances associated with a reversible THF-dissociation process.
In the 13C NMR spectrum of 3-13C at 323 K, the corresponding
resonances appear as multiplets and are downfield shifted at 145.1,
165.5, and 221.3 ppm. These data unambiguously confirm that all
carbon atoms in the C6O6 unit arise from external CO.
Acknowledgment. The authors thank the Ministry of Education,
Culture, Sports, Science and Technology, Japan for funding (Nos.
18064016 and 8GS0207A).
Supporting Information Available: Experimental procedures in
PDF format. X-ray structural data of 2, 3, and 4 in CIF format. This
Additional evidence of the lability of the THF ligands is provided
by isolation of a desolvated product from 3. One observation is
that loss of THF undergoes a striking color change from green to
purple upon exposure of 3 to vacuum in solid or dissolution of 3
in toluene. Addition of THF to the purple product results in
regeneration of the diagnostic green color of 3. Standing a saturated
pentane solution of 3 afforded purple crystals identified as 4 by
X-ray structure analysis.9 Dissociation of the two THF ligands
creates two trigonal-bipyramidal Ta centers, while the other Ta
metals remain octahedral. The Ta4C6O6 core is reserved, and its
internal C-C bond distances exhibit a pattern similar to that found
in 3.
References
(1) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and
Applications of Organotransition Metal Chemistry; University Science
Books: Mill Valley, CA, 1987.
(2) des Abbayes, H; Salau¨n, J.-Y. Dalton Trans. 2003, 1041–1052.
(3) Fagan, P. J.; Manriquez, J. M.; Marks, T. J.; Day, V. W.; Vollmer, S. H.;
Day, C. S. J. Am. Chem. Soc. 1980, 102, 5393–5396.
(4) (a) Jiao, H.; Wu, H.-S. J. Org. Chem. 2003, 68, 1475–1479. (b) Frapper,
G.; Cu, C.-X.; Halet, J.-F.; Saillard, J.-Y.; Kertesz, M. Chem. Commun.
1997, 2011–2012. (c) Sabzyan, H.; Noorbala, M. R. THEOCHEM 2003,
626, 143–158.
(5) (a) Morris, R. M.; Klabunde, K. J. J. Am. Chem. Soc. 1983, 105, 2633–
2639. (b) Carnahan, E. M.; Protasiewicz, J. D.; Lippard, S. J. Acc. Chem.
Res. 1993, 26, 90–97. (c) Chatani, N.; Shinohara, M.; Ikeda, S.; Murai, S.
J. Am. Chem. Soc. 1997, 119, 4303–4304. (d) Zhang, X.-X.; Parks, G. F.;
Wayland, B. B. J. Am. Chem. Soc. 1997, 119, 7938–7944. (e) Wolczanski,
P. T.; Bercaw, J. E. Acc. Chem. Res. 1980, 13, 121–127.
(6) (a) Evans, W. J.; Grate, J. W.; Hughes, L. A.; Zhang, H.; Atwood, J. L.
J. Am. Chem. Soc. 1985, 107, 3728–3730. (b) Evans, W. J.; Lee, D. S.;
Ziller, J. W.; Kaltsoyannis, N. J. Am. Chem. Soc. 2006, 128, 14176–14184.
(7) (a) Summerscales, O. T.; Cloke, F. G. N.; Hitchcock, P. B.; Green, J. C.;
Hazari, N. Science 2006, 311, 829–831. (b) Summerscales, O. T.; Cloke,
F. G. N.; Hitchcock, P. B.; Green, J. C.; Hazari, N. J. Am. Chem. Soc.
2006, 128, 9602–9603. (c) Frey, A. S.; Cloke, F. G. N.; Hitchcock, P. B.;
Day, I. J.; Green, J. C.; Aitken, G. J. Am. Chem. Soc. 2008, 130, 13816–
13817.
The UV-visible spectra of the C6O6 complexes deserve some
comments. High oxidation aryloxide complexes are usually light-
colored. For example, 1 is yellow. In contrast, intense colors are
noted for the C6O6 complexes. The UV-visible spectra of 2, 3,
and 4 contain broad absorptions in the region between 500 and
700 nm with extinction coefficients from 8300 to 12 000 M-1 cm-1
,
which are assigned to the HOMOfLUMO transitions.9 Since the
HOMO has mainly hexatriene π orbital character and the LUMO
gains contribution from tantalum d orbitals in addition to the π*
orbital of the hexatriene unit, the observed absorptions are attribut-
able to ligand-to-metal charge transfer transition.16
(8) Kawaguchi, H.; Matsuo, T. J. Am. Chem. Soc. 2003, 125, 14254–14255.
(9) See Supporting Information (SI) for details of the X-ray crystal structures
and UV-visible spectra.
(10) Kubas, G. J. Chem. ReV. 2007, 107, 4152–4205.
(11) Mulford, D. R.; Clark, J. R.; Schweiger, S. W.; Fanwick, P. E.; Rothwell,
I. P. Organometallics 1999, 18, 4448–4458.
(12) Proulx, G.; Bergman, R. G. J. Am. Chem. Soc. 1996, 118, 1981–1996.
(13) (a) Hofmann, P.; Frede, M.; Stauffert, P.; Lasser, W.; Thewalt, U. Angew.
Chem., Int. Ed. Engl. 1985, 24, 712–713. (b) Barger, P. T.; Santarsiero,
B. D.; Armantrout, J.; Bercaw, J. E. J. Am. Chem. Soc. 1984, 106, 5178–
5186.
(14) (a) Fryzuk, M. D.; MacKay, B. A.; Patrick, B. O. J. Am. Chem. Soc. 2003,
125, 3234–3235. (b) Gavenonis, J.; Tilley, T. D. Organometallics 2004,
23, 31–43.
We have shown that multielectron reductive chemistry of
transition metals can be applicable to the chaining of CO. The
sequence of reductive coupling beginning with the hydride complex
1 ceases with the C6O6 complex, which was not found to react
with CO. Prevention of further CO homologation is possibly due
to the lack of d-electrons available for reducing CO. The C6O6
complexes are remarkably stable as long as they are not exposed
to O2 and water. Coordination to tantalum is ascribed to stabilizing
an acyclic CO linkage.
(15) Each THF ligand can be situated above and below the Ta4C6O6 plane.
(16) To gain more insight into the electronic structures of the complexes, DFT
calculations were performed. See SI for details of these results.
JA9007276
9
J. AM. CHEM. SOC. VOL. 131, NO. 10, 2009 3475