Journal of Chemical & Engineering Data
Article
(
2) Carda-Broch, S.; Berthod, A.; Armstrong, D. W. Solvent
Liquids with Primary and Secondary Alcohols. Thermochim. Acta 2012,
549, 49−56.
Properties of the 1-Butyl-3-Methylimidazolium Hexafluorophosphate
Ionic Liquid. Anal. Bioanal. Chem. 2003, 375, 191−199.
(23) Rilo, E.; Varea, L. M.; Cabeza, O. Density and Derived
Thermodynamic Properties of 1-Ethyl-3-methylimidazolium Alkyl
Sulfate Ionic Liquid Binary Mixtures with Water and with Ethanol
from 288 K to 318 K. J. Chem. Eng. Data 2012, 57 (8), 2136−2142.
(
3) Takeshi, E.; Kazuhiko, M.; Rika, H. Properties of Fluorosulfate-
−
Based Ionic Liquids and Geometries of (FO SOH)OSO F and
2
2
−
(
FO SOH) O SOF . Dalton Trans. 2011, 40, 12491−12499.
2
2
2
(
4) Hallett, J. P.; Welton, T. Room-Temperature Ionic Liquids:
Solvents for Synthesis and Catalysis. 2. Chem. Rev. 2011, 111, 3508−
576.
5) Plechkova, N. V.; Seddon, K. R. Applications of Ionic Liquids in
the Chemical Industry. Chem. Soc. Rev. 2008, 37 (1), 123−150.
6) Seiler, M.; Jork, C.; Kavarnou, A.; Arlt, W.; Hirsch, R. Separation
(24) Garcia-Mardones, M.; Barros, A.; Bandres, I.; Artigas, H.;
Lafuente, C. Thermodynamic Properties of Binary Mixtures
Combining Two Pyridinium-Based Ionic Liquids and Two Alkanols.
J. Chem. Thermodyn. 2012, 51, 17−24.
3
(
(
25) Arce, A.; Rodil, E.; Soto, A. Physical and Excess Properties for
Binary Mixtures of 1-Methyl-3-Octylimidazolium Tetrafluoroborate,
Omim][BF4], Ionic Liquid with Different Alcohols. J. Solution Chem.
006, 35, 63−78.
26) Domanska, U.; Laskowska, M. Effect of Temperature and
(
of Azeotropic Mixtures Using Hyperbranched Polymers or Ionic
[
2
Liquids. AIChE J. 2004, 50, 2439−2454.
(
7) Kubisa, P. Ionic Liquids in the Synthesis and Modification of
(
́
Polymers. J. Polym. Sci. A: Polym. Chem. 2005, 43, 4675−4683.
Composition on the Density and Viscosity of Binary Mixtures of Ionic
(
8) Tan, Z.; Welz-Biermann, U.; Yan, P.; Liu, Q.; Fang, D.
Liquid with Alcohols. J. Solution Chem. 2009, 38 (6), 779−799.
Thermodynamic Properties of Ionic Liquids−Measurements and
Predictions 2011Ionic Liquids: Theory, Properties, New Approaches;
Kokorin, A., Ed.; InTech: Rijeka, Croatia, 2011; pp 3−36.
(27) Vranes, M. B.; Dozic, S.; Djeric, V.; Gadzuric, S. B. Volumetric
Properties of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium
Bis(trifluoromethylsulfonyl)imide with N-Methylformamide and
N,N-Dimethylformamide from (293.15 to 323.15) K. J. Chem. Eng.
Data 2013, 58 (5), 1092−1102.
(
9) Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.;
Brennecke, J. F. Thermophysical Properties of Imidazolium-Based
Ionic Liquids. J. Chem. Eng. Data 2004, 49, 954−964.
(28) Iulian, O.; Ciocirlan, O. Volumetric Properties of Binary
(
10) Jacquemin, J.; Husson, P.; Padua, A. A. H.; Majer, V. Density
Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate
Ionic Liquids with Molecular Solvents. J. Chem. Eng. Data 2012, 57
and Viscosity of Several Pure and Water-Saturated Ionic Liquids. Green
Chem. 2006, 8, 172−180.
(
(
10), 2640−2646.
11) Gardas, R. L.; Freire, M. G.; Carvalho, P. J.; Marrucho, I. M.;
(
29) Juarez-Camacho, E. P.; Manriquez-Ramirez, M. E.; German, C.;
Fonseca, I. M. A.; Ferreira, A. G. M.; Coutinho, J. A. P. High-Pressure
Densities and Derived Thermodynamic Properties of Imidazolium-
Based Ionic Liquids. J. Chem. Eng. Data 2006, 52 (1), 80−88.
Zuniga-Moreno, A. Volumetric Properties of the Binary System
Trihexyltetradecylphosphonium Bromide (CYPHOS IL 102) + N,N-
Dimethylformamide (DMF) at Temperatures from T=293.15 to
313.15 K at Atmospheric Pressure. J. Solution Chem. 2012, 41 (9),
1575−1586.
(30) Zhu, A. L.; Wang, J. J.; Liu, R. X. A Volumetric and Viscosity
Study for the Binary Mixtures of 1-Hexyl-3-Methylimidazolium
Tetrafluoroborate with some Molecular Solvents. J. Chem. Thermodyn.
2011, 43 (5), 796−799.
(
12) Gardas, R. L.; Cost, H. F.; Freire, M. G.; Carvalho, P. J.; M., I.
M.; Fonseca, I. M. A.; Ferreira, A. G. M.; Coutinho, J. A. P. Densities
and Derived Thermodynamic Properties of Imidazolium-, Pyridinium-,
Pyrrolidinium-, and Piperdinum-Based Ionic Liquids. J. Chem. Eng.
Data 2008, 53, 805−811.
(
13) Brigouleix, C.; Anouti, M.; Jacquemin, J.; Caillon-Caravanier,
M.; Galiano, H.; Lemordant, D. Physicochemical Characterization of
Morpholinium Cation Based Protic Ionic Liquids Used As Electro-
lytes. J. Phys. Chem. B 2010, 114, 1757−1766.
(31) Geppert-Rybczynska, M.; Heintz, A.; Lehmann, J. K.; Golus, A.
Volumetric Properties of Binary Mixtures Containing Ionic Liquids
and Some Aprotic Solvents. J. Chem. Eng. Data 2010, 55 (9), 4114−
(
14) Choi, S.; Kim, K.-S.; Cha, J.-H.; Lee, H.; Oh, J.; Lee, B.-B.
Thermal and Electrochemical Properties of Ionic Liquids Based on N-
Methyl-N-Alkyl Morpholinium Cations. Korean J. Chem. Eng. 2006, 23
4
(
120.
32) Wang, H. Y.; Wang, J. J.; Zhang, S. B. Apparent Molar Volumes
(
5), 795−799.
and Expansivities of Ionic Liquids [C(n)mim]Br (n = 4, 8, 10, 12) in
Dimethyl Sulfoxide. J. Chem. Eng. Data 2012, 57 (7), 1939−1944.
(
15) Zhang, Q. S.; Liu, A. X.; Guo, B. N.; Wu, F. Synthesis of Ionic
Liquids Based on the N-Methyl-N-Allyl Morpholinium Cation. Chem.
J. Chin. Univ.-Chin. 2005, 26 (2), 340−342.
(33) Shekaari, H.; Armanfar, E. Apparent Molar Volumes and
Expansivities of Aqueous Solutions of Ionic Liquids, 1-Alkyl-3-
Methylimidazolium Alkyl Sulfate at T = (298.15−328.15) K. Fluid
Phase Equilib. 2011, 303 (2), 120−125.
(
16) Wang, L. M.; Xia, C. Theory Study on Structure Property of N-
Ethyl Morpholinium Ionic Liquid of Different Alkyl Length. In
Advanced Measurement and Test, Pts 1−3; Trans Tech Publications
Ltd: Stafa-Zurich, 2011; Vol: 301−303, pp 170−174.
(
34) Wang, J. J.; Zhang, S. B.; Wang, H. Y.; Pei, Y. C. Apparent Molar
Volumes and Electrical Conductance of Ionic Liquids [C(n)mim]Br
n = 8, 10, 12) in Ethylene Glycol, N,N-Dimethylformamide, and
Dimethylsulfoxide at 298.15 K. J. Chem. Eng. Data 2009, 54 (12),
252−3258.
35) Zafarani-Moattar, M. T.; Shekaari, H. Apparent Molar Volume
(
17) Lava, K.; Binnemans, K.; Cardinaels, T. Piperidinium,
(
Piperazinium and Morpholinium Ionic Liquid Crystals. J. Phys.
Chem. B 2009, 113 (28), 9506−9511.
3
(
(
18) Galinski, M.; Stepniak, I. Morpholinium-Based Ionic Liquid
Mixtures as Electrolytes in Electrochemical Double Layer Capacitors.
and Isentropic Compressibility of Ionic Liquid 1-Butyl-3-Methylimi-
dazolium Bromide in Water, Methanol, and Ethanol at T = (298.15 To
J. Appl. Electrochem. 2009, 39 (10), 1949−1953.
(
19) Hajipour, A. R.; Nasreesfahani, Z.; Ruoho, A. E. An Efficient and
3
(
18.15) K. J. Chem. Thermodyn. 2005, 37 (10), 1029−1035.
Chemoselective Synthesis of Aldehyde 1,1-Diacetates Using Morpho-
linium Bisulfate as a Bronsted Acidic Ionic Liquid Under Solvent-Free
Conditions. Org. Prep. Proced. Int. 2008, 40 (4), 385−391.
36) Khara, D. C.; Kumar, J. P.; Mondal, N.; Samanta, A. Effect of the
Alkyl Chain Length on the Rotational Dynamics of Nonpolar and
Dipolar Solutes in a Series of N-Alkyl-N-methylmorpholinium Ionic
Liquids. J. Phys. Chem. B 2013, 117 (17), 5156−64.
(
20) Cha, J. H.; Kim, K. S.; Choi, S.; Yeon, S. H.; Lee, H.; Lee, C. S.;
Shim, J. J. Size-Controlled Electrochemical Synthesis of Palladium
Nanoparticles Using Morpholinium Ionic Liquid. Korean J. Chem. Eng.
(37) Khara, D. C.; Samanta, A. Fluorescence Response of Coumarin-
1
53 in N-Alkyl-N-methylmorpholinium Ionic Liquids: Are These
2
(
007, 24 (6), 1089−1094.
21) Kim, K. S.; Park, S. Y.; Choi, S.; Lee, H. Ionic Liquid-Polymer
Media More Structured Than the Imidazolium Ionic Liquids? J. Phys.
Chem. B 2012, 116 (45), 13430−8.
(38) Chaban, V. V.; Voroshyloya, I. V.; Kalugin, O. N.; Prezhdo, O.
V. Acetonitrile Boosts Conductivity of Imidazolium Ionic Liquids. J.
Phys. Chem. B 2012, 116 (26), 7719−7727.
Gel Electrolytes Based on Morpholinium Salt and Pvdf(HFP)
Copolymer. J. Power Sources 2006, 155 (2), 385−390.
(
22) Calvar, N.; Gomez, E.; Dominguez, A.; Macedo, E. A.
Thermodynamic Behavior of Binary Mixtures C(N)Mpyntf(2) Ionic
7
24
dx.doi.org/10.1021/je400790d | J. Chem. Eng. Data 2014, 59, 718−725