Chiroptical Properties of Organic Radical Cations
J. Phys. Chem. A, Vol. 108, No. 44, 2004 9549
+
+
M. Comput. Chem. 2000, 24, 275. (i) Yu, S.-W.; Kim, Y.-R.; Kang, S.-O.
Biochem. J. 1999, 341, 755. (j) Brown, B. J.; Deng, Z.; Karplus, P. A.;
Massey, V. J. Biol. Chem. 1998, 273, 32753. (k) Yamamoto, K.; Sawanishi,
H.; Miyamoto, K.-I. Biol. Pharm. Bull. 1998, 21, 356. (l) Font, M.; Monge,
A.; Ruiz, I.; Heras, B. Drug Des. DiscoVery 1997, 14, 259. (m) Lecomte,
S.; Baron, M. H. Biospectroscopy 1997, 3, 31. (n) Rehn, C.; Pindur, U.
Monatsh. Chem. 1996, 127, 645.
(36) All calculations in Table 2 were performed for the (G , G )
conformations with respect to the 2-methypropyl groups. This is indeed
not complete, however, because other conformations such as (T, T) may
be energetically much more favorable in some cases. For instance, the anti
+
+
•+
(G , G ) conformer is most stable for 2b and 2b at B3LYP/6-311+G-
(2d, p)//HF/3-21G* level calculations, while the most stable conformer of
•+
2b is the anti (T, T) conformation at the B3LYP/6-311+G(2d, p)//B3LYP/
6-31G(d) level. Accordingly, in Table 2, we can only roughly estimate the
relative energetical preference of anti and syn forms. This phenomenon is
further examined in Table 3 for the compound 2b.
(37) We have prepared similar derivatives using achiral 2-butanol. From
GC analysis, the meso form and dl pairs were obtained in ca. 1:1 and
appeared separately in the GC chromatogram. In use of (S)-2-butanol, such
epimers were not observed, and a single stereoisomer was detected by GC.
This indicates that the stereoretention was not occurring during the
Mitsunobu coupling reaction.
(13) Recently, we have demonstrated that the exciplex derived from
direct irradiation of donor and excited charge-transfer complex affords
different photoreactivity as well as diastereoselectivity. Saito, H.; Mori, T.;
Wada, T.; Inoue, Y. J. Am. Chem. Soc. 2004, 126, 1900.
(
14) (a) Berova, N.; Nakanishi, K.; Woody, R. W. Circular Dichroism,
Principles and Applications, 2nd ed.; John Wiley & Sons: New York, 2000.
b) Lightner, D. A.; Gurst, J. E. Organic Conformational Analysis and
(
Stereochemistry from Circular Dichroism Spectroscopy; John Wiley &
Sons: New York, 2000.
(
(
15) Sur, S.; Colpa, J. P. Chem. Phys. Lett. 1986, 127, 577.
16) (a) Redl, F. X.; Lutz, M.; Daub, J. Chem.sEur. J. 2001, 7,
(38) For stoichiometry of oxidation steps in eqs 1 and 2, see refs 27
and 28.
5
350. (b) Beer, G.; Niederalt, C.; Grimme, S.; Daub, J. Angew. Chem., Int.
(39) Witowski, S.; Wawer, I. J. Chem. Soc., Perkin Trans. 2 2002,
433.
Ed. 2000, 39, 3252. (c) Westermeier, C.; Gallmeier, H.-C.; Komma, M.;
Daub, J. Chem. Commun. 1999, 2427.
(40) (a) Cheeseman, J. R.; Ashvar, C. S.; Frisch, M. J.; Devlin, F. J.;
Stephens, P. J. Chem. Phys. Lett. 1996, 252, 211. (b) Bak, K. L.; Jorgensen,
P.; Helgaker, T.; Ruud, K.; Jensen, H. J. A. J. Chem. Phys. 1994, 100,
6620. (c) Bak, K. L.; Jorgensen, P.; Trygve, H.; Kenneth, R.; Jensen, H. J.
A. J. Chem. Phys. 1993, 98, 8873. (d) Stephens, P. J. Chem. Phys. Lett.
1991, 180, 472. (e) Jalkanen, K. J.; Kawiecki, R. W.; Stephens, P. J.; Amos,
R. D. J. Phys. Chem. 1990, 94, 7040. (f) Stephens, P. J.; Jalkanen, K. J.;
Amos, R. D.; Lazzeretti, P.; Zanasi, R. J. Phys. Chem. 1990, 94, 1811. (g)
Stephens, P. J.; Jalkanen, K. J.; Lazzeretti, P.; Zanasi, R. Chem. Phys. Lett.
1989, 156, 509. (h) Amos, R. D.; Jalkanen, K. J.; Stephens, P. J. J. Phys.
Chem. 1988, 92, 5571. (i) Jalkanen, K. J.; Stephens, P. J.; Amos, R. D.;
Handy, N. C. J. Phys. Chem. 1988, 92, 1781. (j) Amos, R. D.; Handy, N.
C.; Jalkanen, K. J.; Stephens, P. J. Chem. Phys. Lett. 1987, 133, 21. (k)
Stephens, P. J. J. Phys. Chem. 1987, 91, 1712. (l) Stephens, P. J. J. Phys.
Chem. 1985, 89, 748.
(17) (a) Kliger, D. S.; Lewis, J. W. In Circular Dichroism, Principles
and Applications, 2nd ed.; Berova, N., Nakanishi, K., Woody, R. Eds.; John
Wiley & Sons: New York, 2000; p 2431. (b) Dartigalongue, T.; Hache, F.
J. Opt. Soc. Am. B 2003, 20, 1780.
(
18) Wagniere, G. H. Chem. Phys. 1999, 245, 165.
(19) Shida, T. Electronic Absorption Spectra of Radical Ions; Elsevier:
Amsterdam, 1988; p 257.
20) Mori, T.; Shinkuma, J.; Sato, M.; Saito, H.; Wada, T.; Inoue, Y.
Enantiomer 2002, 7, 115.
(
(
21) Machlin, L. J. Vitamin E; Dekker: New York, 1980.
(22) (a) Ahrens, B.; Davidson, M. G.; Forsyth, V. T.; Mahon, M. F.;
Johnson, A. L.; Mason, S. A.; Price, R. D.; Raithby, P. R. J. Am. Chem.
Soc. 2001, 123, 9164. (b) Culbertson, S. M.; Vinqvist, M. R.; Barclay, L.
R. C.; Porter, N. A. J. Am. Chem. Soc. 2001, 123, 8951.
(
23) (a) Amorati, R.; Ferroni, F.; Lucarini, M.; Pedulli, G. F.; Valgimigli,
(41) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. (b) Becke, A. D.
J. Chem. Phys. 1993, 98, 5648.
L. J. Org. Chem. 2002, 67, 9295. (b) Sch a¨ del, U.; Gruner, M.; Habicher,
W. D. Tetrahedron 2002, 58, 5081. (c) Sch a¨ del, U.; Habicher, W. D.
Synthesis 1998, 293.
(42) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,
I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M.
W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon,
M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.11; Gaussian,
Inc.: Pittsburgh, PA, 1998.
(43) Wang, F.; Polavarapu, P. L. J. Phys. Chem. A 2000, 104,
10683.
(44) (a) Shaw, R. A.; Wieser, H.; Dutler, R.; Rauk, A. J. Am. Chem.
Soc. 1990, 112, 5401. (b) Dothe, H.; Lowe, M. A.; Alper, J. S. J. Phys.
Chem. 1989, 93, 6632.
(45) (a) Izumi, H.; Yamagami, S.; Futamura, S.; Nafie, L. A.; Dukor,
R. K. J. Am. Chem. Soc. 2004, 126, 194. (b) Freedman, T. B.; Cao, X.;
Rajca, A.; Wang, H.; Nafie, L. A. J. Phys. Chem. A 2003, 107, 7692. (c)
Tomankova, Z.; Setnicka, V.; Urbanova, M.; Matejka, P.; Kral, V.; Volka,
K.; Bour, P. J. Org. Chem. 2004, 69, 26. (d) Kuppens, T.; Langenaeker,
W.; Tollenaere, J. P.; Bultinck, P. J. Phys. Chem. A. 2003, 107, 542. (e)
Devlin, F. J.; Stephens, P. J.; Cheeseman, J. R.; Frisch, M. J. J. Am. Chem.
Soc. 1996, 118, 6327.
(24) (a) Baxter, J. G.; Robeson, C. D.; Taylor, J. D.; Lehman, R. W. J.
Am. Chem. Soc. 1943, 65, 918. (b) Sebrell, W. H.; Harris, R. S. The Vitamins;
Academic Press: New York, 1972; p 166.
(25) There are other related reports on ECD of optically active organic
radical anions and neutral radicals; however, the precise data such as molar
ellipticities were not reported due to similar difficulties. (a) Sur, S.; Colpa,
J. P.; Wan, J. K. S. Chem. Phys. 1986, 108, 133. (b) Ito, O.; Hatano, M. J.
Am. Chem. Soc. 1974, 96, 4375. (c) Ito, O.; Tajiri, A.; Hatano, M. Chem.
Phys. Lett. 1973, 19, 125. (d) Irurre, J.; Santamaria, J.; Gonzalez-Rego, M.
C. Chirality 1995, 7, 154.
(
26) Smith, H. E. Chem. ReV. 1998, 98, 1709.
(27) Rathore, R.; Kumar, A. S.; Lindeman, S. V.; Kochi, J. K. J. Org.
Chem. 1998, 63, 5847.
28) Rathore, R.; Zhu, C.; Lindeman, S. V.; Kochi, J. K. J. Chem. Soc.,
Perkin Trans. 2 2000, 1837.
29) Lehtovuori, P.; Joela, H. Phys. Chem. Chem. Phys. 2002, 4,
928.
30) Judging from the highly reliable ECD spectrum of the quantitatively
(
(
1
(
•
+
prepared methyl ester radical cation (1b ), we determined that the sign of
•
+
CE of 1a reported previously was erroneous (vide infra). Although we
do not have an immediate answer to this discrepancy, protonated and/or
sulfonated 1a formed upon treatment with strong acid would play some
role.
(
31) Gwaltney, S. R.; Rosokha, S. V.; Head-Gordon, M.; Kochi, J. K.
J. Am. Chem. Soc. 2003, 125, 3273.
32) Mori, T.; Takamoto, M.; Wada, T.; Inoue, Y. HelV. Chim. Acta
001, 84, 2693.
(46) Bernstein, H. J.; Pederson, E. E. J. Chem. Phys. 1949, 17,
885.
(47) Abe, K.; Ito, K.; Sueyawa, H.; Hirota, M.; Nishino, M. Bull. Chem.
Soc. Jpn. 1986, 59, 3125.
(48) Hagemann, H.; Mareda, J.; Chiancone, C.; Bill, H. J. Mol. Struct.
1997, 410, 357.
(49) Stephens, P. J.; Devlin, F. J.; Aamouche, A. In Chirality: Physical
Chemistry; Hicks, J. M., Ed.; ACS Symposium Series 810; American
Chemical Society: Washington, DC, 2002; p 18.
(
2
(
33) Note that, in ref 15, the ∆ꢀ value of 1a was reported to be -20,
which is not in agreement with our value. However this report may be
erroneous, because the g value (∆ꢀ/ꢀ) reported in the same literature almost
coincided with ours.
(
(
34) Rathore, R.; Kochi, J. K. J. Org. Chem. 1995, 60, 4399.
35) (a) Scott, A.; Radom, L. J. Phys. Chem. 1996, 100, 16502. (b)
Wong, M. W. Chem. Phys. Lett. 1996, 256, 391. (c) Pople, J. A.; Scott, A.
P.; Wong, M. W.; Radom, L. Isr. J. Chem. 1993, 33, 345. (d) Pople, J. A.;
Schlegel, H. B.; Krishnan, R.; DeFrees, D. J.; Binkley, J. S.; Frisch, M. J.;
Whiteside, R. A.; Hout, R. F.; Hehre, W. J. Int. J. Quantum Chem., Quantum
Chem. Symp. 1981, 15, 269.
(50) (a) Gigante, D. M. P.; Long, F.; Bodack, L. A.; Evans, J. M.;
Kallmerten, J.; Nafie, L. A.; Freedman, T. B. J. Phys. Chem. A 1999, 103,
1523. (b) Nafie, L. A. Enantiomer 1998, 3, 283.
(51) Rathore, R.; Bosch, E.; Kochi, J. K. J. Chem. Soc., Perkin Trans.
2 1994, 1157.