Please do not adjust margins
Green Chemistry
DOI: 10.1039/C5GC02755A
COMMUNICATION
Journal Name
To get an insight into the reaction mechanism, several
control experiments were conducted to confirm which
pathway this fluorination takes (Scheme 3) (see the supporting
information for two possible reaction pathways). First, 1u
could give the product 2u in 90% yield under the standard
conditions and the pH value of the solution after reaction was
2
3
(a) M. E. Phelps, Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 9226;
b) S. M. Ametamey, M. Honer, P. A. Schubiger, Chem. Rev.,
008, 108, 1501.
(a) M. H. Katcher, A. G. Doyle, J. Am. Chem. Soc., 2010, 132
7402; (b) M. H. Katcher, A. Sha, A. G. Doyle, J. Am. Chem.
Soc., 2011, 133, 15902; (c) P. S. Fier, J. F. Hartwig, J. Am.
Chem. Soc., 2012, 134, 10795; (d) Z. Zhang, F. Wang, X. Mu, P.
Chen, G. Liu, Angew. Chem., Int. Ed., 2013, 52, 7549; (e) X.
(
2
,
1
2
.02 (a), whereas radical inhibitor TEMPO (2,2,6,6-tetramethyl-
-piperidinyloxy) was introduced to the reaction, the
Mu, H. Zhang, P. Chen, G. Liu, Chem. Sci., 2014, 5, 275; (f) A.
1
I. Konovalov, E. O. Gorbacheva, F. M. Miloserdov, V. V.
Grushin, Chem. Commun., 2015, 51, 13527.
(a) D. A. Watson, M. J. Su, G. Teverovskiy, Y. Zhang, J.
formation of 2u was completely suppressed, which suggested
that the reaction took place via a free-radical pathway (b).
Furthermore, 2u could also be obtained in 87% yield when
sodium benzenesulfinate served as the substrate (c). However,
TEMPO was found to have little influence on this reaction (d).
The results implied that benzenesulfinate was not the
intermediate of this fluorination.
4
5
GarciaFortanet, T. Kinzel, S. T. Buchwald, Science, 2009, 325
661; (b) M. N. Stewart, B. G. Hockley, P. J. H. Scott, Chem.
Commun., 2015, 51, 14805.
,
1
(a) C. Hollingworth, A. Hazari, M. N. Hopkinson, M. Tredwell,
E. Benedetto, M. Huiban, A. D. Gee, J. M. Brown, V.
Gouverneur, Angew. Chem., Int. Ed., 2011, 50, 2613; (b) E.
Benedetto, M. Tredwell, C. Hollingworth, T. Khotavivattana, J.
On the basis of the results described above and previous
1
8e,19
M. Brown, V. Gouverneur, Chem. Sci., 2013, 4, 89.
reports,
Sulfonyl hydrazide can react with Selectfluor to form fluorine
and free radical by liberating nitrogen in the presence of
water and an acidic solution is obtained. Then can resonate
with which rapidly captures fluorine to generate the final
product of sulfonyl fluoride.
a plausible mechanism was proposed (Scheme 4).
6
(a) T. Gustafsson, R. Gilmour, P. H. Seeberger, Chem.
Commun., 2008, 3022; (b) F. Yin, Z. Wang, Z. Li, C. Li, J. Am.
Chem. Soc., 2012, 134, 10401; (c) X. Wu, C. Meng, X. Yuan, X.
Jia, X. Qian, J. Ye, Chem. Commun., 2015, 51, 11864; (d) N. R.
Patel, R. A. Flowers, J. Org. Chem., 2015, 80, 5834.
a
a
b
7
8
A. M. Lauer, J. Wu, Org. Lett., 2012, 14, 5138.
(a) T. Furuya, A. E. Strom, T. Ritter, J. Am. Chem. Soc., 2009,
The result of Scheme 3c showed that sodium
benzenesulfinate could also react well with Selectfluor. To
further establish the general utility of these transformations,
sodium arylsulfinates were employed as the substrates to
synthesize sulfonyl fluorides (Table 3). Substrates bearing
electron-donating groups (methyl and t-butyl) could give the
products in good yields (2a and 2c). However, only moderate
yields were achieved when electron-withdrawing groups were
1
1
31, 1662; (b) Y. Ye, M. S. Sanford, J. Am. Chem. Soc., 2013,
35, 4648.
9
1
A. R. Mazzotti, M. G. Campbell, P. Tang, J. M. Murphy, T.
Ritter, J. Am. Chem. Soc., 2013, 135, 14012.
0 For selected examples of transition metal-catalyzed
fluorination, see: (a) M. C. Pacheco, S. Purser, V. Gouverneur,
Chem. Rev., 2008, 108, 1943; (b) C. Hollingworth, V.
Gouverneur, Chem. Commun., 2012, 48, 2929; (c) J. J.
Topczewski, T. J. Tewson, H. M. Nguyen, J. Am. Chem. Soc.,
2011, 133, 19318; (d) J. R. Brandt, E. Lee, G. B. Boursalian, T.
present on the benzene ring (2f
, 2g, 2i, 2j, 2k and 2l). Similarly,
Ritter, Chem. Sci., 2014,
5, 169; (e) S. Bloom, C. R. Pitts, R.
Woltornist, A. Griswold, M. G. Holl, T. Lectka, Org. Lett., 2013,
aromatic heterocycle of thiophene was well tolerated to give
2r
in 76% yield.
1
5, 1722; (f) M.-G. Braun, A. G. Doyle, J. Am. Chem. Soc.,
013, 135, 12990; (g) M. G. Campbell, T. Ritter, Chem.
In summary, we have firstly developed a highly efficient
2
Rev., 2015, 115, 612.
protocol for the synthesis of sulfonyl fluorides by taking
advantage of a metal-free radical fluorination strategy. It is 11 M. Rueda-Becerril, C. C. Sazepin, J. C. T. Leung, T. Okbinoglu,
P. Kennepohl, J.-F. Paquin, G. M. Sammis, J. Am. Chem. Soc.,
noteworthy that this method is distinguished by (1) no use of
2
012, 134, 4026.
any transition metal; (2) the lack of any additive; (3)
operational simplicity; (4) water as the solvent; (5) air
atmosphere, (6) broad substrate scope and (7) gram-scale
synthesis. Detailed mechanistic studies and further
applications of the reaction are ongoing in our laboratory.
Financial support from the National Natural Science
Foundation of China (2127222, 91213303, 21172205,
1
2 (a) C. Gu, Chem. Biol., 2013, 20, 541; (b) N. P. Grimster, S.
Connelly, A. Baranczak, J. Dong, L. B. Krasnova, K. B.
Sharpless, E. T. Powers, I. A. Wilson, J. W. Kelly, J. Am. Chem.
Soc., 2013, 135, 5656; (c) A. J. Brouwer, A. Jonker, P.
Werkhoven, E. Kuo, N. Li, N. Gallastegui, J. Kemmink, B. I.
Florea, M. Groll, H. S. Overkleeft, R. M. J. Liskamp, J. Med.
Chem., 2012, 55, 10995.
3 (a) Y. Segall, G. B. Quistad, D. K. Nomura, J. E. Casida, Bioorg.
Med. Chem. Lett., 2003, 13, 3301; (b) S. R. Dubbaka, P. Vogel,
Tetrahedron, 2005, 61, 1523; (c) Y. Segall, G. B. Quistad, J. E.
Casida, Synth. Commun., 2003, 33, 2151; (d) J.-G. Kim, D. O.
Jang, Synlett, 2010, 3049; (e) L. Matesic, N. A. Wyatt, B. H.
Fraser, M. P. Roberts, T. Q. Pham, I. Greguric, J. Org. Chem.,
2013, 78, 11262.
1
20932002) is greatly acknowledged.
Notes and references
1
(a) P. Jeschke, ChemBioChem, 2004, 5, 570; (b) F. Babudri, G.
M. Farinola, F. Naso, R. Ragni, Chem. Commun., 2007, 1003; 14 M. Kirihara, S. Naito, Y. Nishimura, Y. Ishizuka, T. Iwai, H.
(
c) K. Müller, C. Faeh, F. Diederich, Science, 2007, 317, 1881;
d) W. K. Hagmann, J. Med. Chem., 2008, 51, 4359; (e) S.
Takeuchi, T. Ogata, H. Hanai, Y. Kinoshita, M. Kishida, K.
,
(
Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc.
Yamazaki, T. Noguchi, S. Yamashoji, Tetrahedron, 2014, 70
2464.
Rev. 2008, 37, 320; (f) K. L. Kirk, J. Fluorine Chem., 2006, 127
,
15 For selected examples of heterocatalysis, see: (a) M. J.
Climent, A. Corma, S. Iborra, Chem. Rev., 2011, 111, 1072Z;
(b) Guo, B. Liu, Q. Zhang, W. Deng, Y. Wang, Y. Yang, Chem.
Soc. Rev., 2014, 43, 3480; (c) A. Narita, X.-Y. Wang, X. Feng, K.
Müllen, Chem. Soc. Rev., 2015, 44, 6616; (d) C. Gonzalez-
1
4
013; (g) T. Furuya, A. S. Kamlet, T. Ritter, Nature, 2011, 473
70.
,
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins