and the BbBEAS-expressing E. coli are devoid of other accep-
table 2-hydroxy carboxylic acids. Both producer strains also
fully methylated all three amino acid positions of these beau-
vericin analogues, with the exception of Beau-10 from E. coli
where one of the amino acid positions remained unmethylated.
For example, feeding hydroxy acid 12 (DL-2-hydroxy-pent-4-
The production of these new beauvericins could now be
optimized and scaled up for characterization in various
biological assays.
This work was supported by the Cluster of Excellence ‘‘Unifying
concepts of catalysis’’ and coordinated by the TU Berlin.
À
ynoic acid) to B. bassiana kivr yields Beau-12 with a molecular
+
mass of [M + H] = 772.6 and a retention time of 5.3 min,
Notes and references
with the corresponding MS/MS spectrum providing a finger-
print where each peak can be assigned to one fragment of the
1 R. L. Hamill, C. E. Higgens, H. E. Boaz and M. Gorman,
Tetrahedron Lett., 1969, 10, 4255–4258.
2
3
A. A. Yakasai, J. Davison, Z. Wasil, L. M. Halo, C. P. Butts,
C. M. Lazarus, A. M. Bailey, T. J. Simpson and R. J. Cox, J. Am.
Chem. Soc., 2011, 133, 10990–10998.
L. M. Halo, J. W. Marshall, A. A. Yakasai, Z. Song, C. P. Butts,
M. P. Crump, M. Heneghan, A. M. Bailey, T. J. Simpson,
C. M. Lazarus and R. J. Cox, ChemBioChem, 2008, 9, 585–594.
molecule (Fig. S3h, ESIw). Similarly, feeding hydroxy acid 4
+
D-2-hydroxy-pentanoic acid) to E. coli bbBeas yields Beau-4
(
+
M+H] = 784.4 with a retention time of 5.7 min. Character-
[
istic fragments from MS/MS experiments were assigned accord-
ingly (Fig. S4c, ESIw). The yields of the beauvericin analogues
Beau-2, -4, -5, -8, -9, -10, -12 and -16 from B. bassina kivr were
4
5
6
¨ ¨
¨
R. Sussmuth, J. Muller, H. von Dohren and I. Molnar, Nat. Prod.
´
Rep., 2011, 28, 99–124.
À
J. Zhan, A. M. Burns, M. X. Liu, S. H. Faeth and A. A. L.
Gunatilaka, J. Nat. Prod., 2007, 70, 227–232.
G. A. Conder, S. S. Johnson, D. S. Nowakowski, T. E. Blake,
F. E. Dutton, S. J. Nelson and E. M. Thomas, J. Antibiot., 1995,
48, 820–823.
F. Sarabia, S. Chammaa, A. S. Ruiz, L. M. Ortiz and F. J. Herrera,
Curr. Med. Chem., 2004, 11, 1309.
M. A. Fischbach and C. T. Walsh, Chem. Rev., 2006, 106,
3468–3496.
A. Koglin and C. T. Walsh, Nat. Prod. Rep., 2009, 26, 987–1000.
estimated by HPLC-ESI-MS (for quantification see ESIw,
General techniques) to range between 0.04 and 7.82 mg L
À1
(
Table 2, and Fig. S3a–i, and Table S2, ESIw). Upon compar-
À1
ison, we find that the same strain produces 1.1 mg L
7
8
9
beauvericin upon feeding the natural hydroxy acid 3 (D-Hiv)
under identical fermentation conditions. Product yields in
À1
À1
E. coli ranged from B0.005 mg L to B2.8 mg L for
Beau-2, -4, -5, -8, -9 and -10, as compared to that of beauvericin
À1
10 R. Finking and M. A. Marahiel, Annu. Rev. Microbiol., 2004, 58,
53–488.
1 H. von Do
12 Y. Xu, E. M. K. Wijeratne, P. Espinosa-Artiles, A. A. L.
Gunatilaka and I. Molnar, ChemBioChem, 2009, 10, 345–354.
3 C. Lee, H. Gorisch, H. Kleinkauf and R. Zocher, J. Biol. Chem.,
992, 267, 11741–11744.
14 S. Weist and R. D. Sussmuth, Appl. Microbiol. Biotechnol., 2005,
8, 141–150.
5 S. Weist, B. Bister, O. Puk, D. Bischoff, S. Pelzer, G. J. Nicholson,
W. Wohlleben, G. Jung and R. D. Sussmuth, Angew. Chem., Int.
Ed., 2002, 41, 3383–3385.
16 S. Weist, C. Kittel, D. Bischoff, B. Bister, V. Pfeifer,
G. J. Nicholson, W. Wohlleben and R. D. Sussmuth, J. Am. Chem.
Soc., 2004, 126, 5942–5943.
at B3 mg L with the native substrate 3 in this strain (Table 2,
4
and Fig. S4a–g, and Table S3, ESIw). Surprisingly, precursor
analogues 8 and 9 provide for beauvericin analogues yields in
1
¨
hren, Adv. Biochem. Eng./Biotechnol., 2004, 88, 217–264.
À1
´
B. bassiana of up to 7.8 and 5.2 mg L , respectively, exceeding
1
¨
that of the native product beauvericin. Although the same
+
precursor analogues also performed well in E. coli bbBeas ,
1
¨
6
the yields of Beau-8 and Beau-9 did not exceed that of
beauvericin in this host. In contrast to chemoenzymatic
synthesis, product analogue yields are determined not only by
the innate substrate preferences of BbBEAS during in vivo
biosynthesis. Rather, the variability of precursor uptake,
precursor and product toxicity, and catabolism of the precursor
or even the product can all reduce or boost beauvericin
analogue yields to different extents in different host strains.
Thus, Beau-13 and Beau-14 were only detectable during in vitro
chemoenzymatic synthesis, but not during in vivo biocatalysis.
Conversely, while precursor analogues 4, 5, 8, 9, and 10 were
apparently acceptable for BbBEAS in vivo, the corresponding
CODs remained below the detection limits of the chemoenzymatic
assay. Such unexpected and unpredictable results emphasize the
complementary nature of in vitro chemoenzymatic and in vivo
1
¨
¨
1
7 S. Eichner, T. Knobloch, H. G. Floss, J. Fohrer, K. Harmrolfs,
J. Hermane, A. Schulz, F. Sasse, P. Spiteller, F. Taft and
A. Kirschning, Angew. Chem., Int. Ed., 2012, 51, 752–757.
1
1
2
2
8 Y. Xu, R. Orozco, E. M. K. Wijeratne, A. A. L. Gunatilaka,
S. P. Stock and I. Molna
9 S. C. Feifel, T. Schmiederer, T. Hornbogen, H. Berg, R. D.
Sussmuth and R. Zocher, ChemBioChem, 2007, 8, 1767–1770.
0 J. Muller, S. C. Feifel, T. Schmiederer, R. Zocher and
R. D. Sussmuth, ChemBioChem, 2009, 10, 323–328.
1 M. Krause, A. Lindemann, M. Glinski, T. Hornbogen, G. Bonse,
P. Jeschke, G. Thielking, W. Gau, H. Kleinkauf and R. Zocher,
J. Antibiot., 2001, 54, 797–804.
´
r, Chem. Biol., 2008, 15, 898–907.
¨
¨
¨
2
7
22 Y. Xu, J. Zhan, E. M. Wijeratne, A. M. Burns, A. A.
L. Gunatilaka and I. Molnar, J. Nat. Prod., 2007, 70, 1467–1471.
whole cell biocatalytic approaches towards natural product
diversification and ‘‘unnatural product’’ biosynthesis. While the
full characterization of the substrate specificity of BbBEAS
requires further studies, our results show that the tolerance
spectrum of this enzyme includes hydroxy acids with various
aliphatic branched side chains, and extends even to halogenated
hydroxy acids. Particularly interesting is the biosynthesis, albeit at
a low yield, of Beau-12 with the ethynyl side chain amenable to
further derivatization by 1,3-dipolar cycloaddition reactions
known as ‘‘click chemistry’’ as has also been shown recently for
´
3 C. Nilanonta, M. Isaka, P. Kittakoop, S. Trakulnaleamsai,
2
M. Tanticharoen and Y. Thebtaranonth, Tetrahedron, 2002, 58,
3
355–3360.
2
2
2
4 H. Peeters, R. Zocher, N. Madry, P. B. Oelrichs, H. Kleinkauf and
G. Kraepelin, J. Antibiot., 1983, 36, 1762–1766.
5 R. Zocher, U. Keller and H. Kleinkauf, Biochemistry, 1982, 21,
43–48.
6 R. Zocher, U. Keller, H. Kleinkauf, in Peptide Antibiotics,
Biosynthesis and Functions, ed. H. Kleinkauf, H. v. Dohren, Walter
¨
de Gruyter & Co, Berlin, New York, 1982, pp. 269–274.
27 A. Kirschning and F. Hahn, Angew. Chem., 2012, 124, 2–13.
28 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed.,
28,29
ribosomally synthesized peptide antibiotics.
2001, 40, 2004–2021.
9 F. Oldach, R. Al-Toma, A. Kuthning, T. Caetano, S. Mendo,
N. Budisa and R. D. Sussmuth, Angew. Chem., Int. Ed., 2012, 51,
In summary, we successfully generated seven novel beau-
vericins by in vitro chemoenzymatic and in vivo biocatalytic
syntheses using custom-synthetic hydroxy acid precursor analogues.
2
¨
415–418.
5
676 Chem. Commun., 2012, 48, 5674–5676
This journal is c The Royal Society of Chemistry 2012