Journal of the American Chemical Society
Page 4 of 5
(
b) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014,
47, 2558. (c) Hong, A. Y.; Stoltz, B. M. Eur. J. Org. Chem.
013, 2013, 2745. (d) Tosatti, P.; Nelson, A.; Marsden, S. P.
Shi, S.-L.; Niu, D.; Liu, P.; Buchwald, S. L. Science 2015,
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
349, 62. (f) Bandar, J. S.; Pirnot, M. T.; Buchwald, S. L. J.
Am. Chem. Soc. 2015, 137, 14812. (g) Zhu, S.; Niljianskul,
N.; Buchwald, S. L. Nat. Chem. 2016, 8, 144. (h) Shi, S.-L.;
Wong, Z. L.; Buchwald, S. L. Nature 2016, doi:
10.1038/nature17191. For the independent, contemporaneous
development of a related system, see: (i) Miki, Y.; Hirano, K.;
Satoh, T.; Miura, M. Angew. Chem. Int. Ed. 2013, 52, 10830.
(j) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014,
16, 1498. (k) Nishikawa, D.; Hirano, K.; Miura, M. J. Am.
Chem. Soc. 2015, 137, 15620. For a recent report of directed
hydroamination of internal alkenes, see: (l) Xi, Y.; Butcher,
T. W.; Zhang, J.; Hartwig, J. F. Angew. Chem. Int. Ed. 2016,
55, 776.
2
Org. Biomol. Chem. 2012, 10, 3147. (e) Hartwig, J. F.; Stan-
ley, L. M. Acc. Chem. Res. 2010, 43, 1461. (f) Lu, Z.; Ma, S.
Angew. Chem. Int. Ed. 2008, 47, 258. (g) Helmchen, G.;
Dahnz, A.; Dübon, P.; Schelwies, M.; Weihofen, R. Chem.
Commun. 2007, 675. (h) Mohr, J. T.; Stoltz, B. M. Chem.
Asian J. 2007, 2, 1476. (i) Trost, B. M.; Crawley, M. L.
Chem. Rev. 2003, 103, 2921.
2
3
.
.
N
For selected reviews on enantioselective Cu-catalyzed S 2´-
like electrophilic allylation reactions, see: (a) Langlois, J.-B.;
Alexakis, A. Top. Organomet. Chem. 2012, 38, 235. (b) Fal-
ciola, C. A.; Alexakis, A. Eur. J. Org. Chem. 2008, 2008,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
3
765. (c) Alexakis, A.; Bäckvall, J.-E.; Krause, N.; Pàmies,
7. Ascic, E.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137,
4666.
O.; Diéguez M. Chem. Rev. 2008, 108, 2796. (d)
Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A.
J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824.
For selected reviews on the enantioselective nucleophilic ad-
dition of allylmetal species to C=X bonds, see: (a) Yus, M.;
González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111,
8. (a) Wang, Y.-M.; Bruno, N. C.; Placeres, Á, L.; Zhu, S.;
Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 10524. For the
CuH-catalyzed hydroamination of alkynes, see: (b) Uehling,
M. R.; Suess, A. M.; Lalic, G. J. Am. Chem. Soc. 2015, 137,
1424. (c) Suess, A. M.; Uehling, M. R.; Kaminsky, W.; Lalic,
G. J. Am. Chem. Soc. 2015, 137, 7747. For a related Cu-
catalyzed hydroalkylation of dienes, see: (d) Iwasaki, T.;
Shimizu, R.; Imanishi, R.; Kuniyasu, H.; Kambe, N. Angew.
Chem. Int. Ed. 2015, 54, 9347.
9. For an approach using stoichiometric boron reagents see: (a)
Nave, S.; Sonawane, R. P.; Elford, T. G.; Aggarwal, V. K. J.
Am. Chem. Soc. 2010, 132, 17096. For a multistep approach
using asymmetric methylzirconation, see: (b) Novak, T.; Tan,
Z.; Liang, B.; Negishi, E.-i. J. Am. Chem. Soc. 2005, 127,
2838. Limited examples of a dynamic kinetic allylation of
benzylic ethers using a chiral Ti complex has been reported:
(c) Braun, M.; Kotter, W. Angew. Chem Int. Ed. 2004, 43,
514.
10. Initial preparation of Ph-BPE•CuCl complex: Yazaki, R.;
Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132,
5522.
11. The addition of LiCl to the catalyst prepared from Cu(OAc)2
also led to a significant increase in enantioselectivity. The na-
ture of this chloride anion effect is the subject of ongoing in-
vestigations.
12. In preliminary investigations, 3-substituted allylic phosphate
substrates were also found to undergo the desired transfor-
mation. However, under the present reaction conditions, poor
diastereoselectivities were obtained. For example, the reac-
tion of cinnamyl diphenylphosphate and 4-phenylstyrene af-
forded the hydroallylation product as a 1:1.1 mixture of dia-
stereomers in 70% combined yield (NMR). Attempts to pre-
pare a 1,1-dimethyl substituted allylic phosphate resulted in
decomposition.
7
2
774. (b) Yamada, K.-i.; Tomioka, K. Chem. Rev. 2008, 108,
874. (c) Chemler, S. R.; Roush, W. R. In Modern Carbonyl
Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, Germany,
000, pp. 403-490. For a transfer hydrogenation strategy for
2
the in situ generation of carbon nucleophiles, including al-
lylmetal species, see: (d) Ketcham, J. M.; Shin, I.; Montgom-
ery, T. P.; Krische, M. J. Angew. Chem. Int. Ed. 2014, 93,
9
142. (e) Patman, R. L.; Bower, J. F.; Kim, I. S.; Krische, M.
J. Aldrichimica Acta 2008, 41, 95. For mechanistically dis-
tinct hydrovinylation processes leading to similar products,
see: (f) RajanBabu, T. V. Chem Rev. 2003, 103, 2845.
4. For seminal reports on Cu-catalyzed allylic alkylation, see: (a)
van Klaveren, M.; Persson, E. S. M.; del Villar, A.; Grove, D.
M.; Bäckvall, J.-E.; van Koten, G. Tetrahedron Lett. 1995,
3
6, 3059. (b) Dübner, F.; Knochel, P. Angew. Chem. Int. Ed.
999, 38, 379. (c) Luchaco-Cullis, C. A.; Mizutani, H.; Mur-
1
phy, K. E.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2001, 40,
1456. (d) Alexakis, A.; Malan, C.; Lea, L.; Benhaim, C.;
Fournioux, X. Synlett 2001, 927. (e) Van Veldhuizen, J. J.;
Campbell, J. E.; Giudici, R. E.; Hoveyda, A. H. J. Am. Chem.
Soc. 2005, 127, 6877. (f) Lee, Y.; Akiyama, K.; Gillingham,
D. G.; Brown, M. K.; Hoveyda, A. H. J. Am. Chem. Soc.
2008, 130, 446. (g) Shintani, R.; Takatsu, K.; Takeda, M.;
Hayashi, T. Angew. Chem. 2011, 50, 8656. (h) Shido, Y.; Yo-
shida, M.; Tanabe, M.; Ohmiya, H.; Sawamura, M. J. Am.
Chem. Soc. 2012, 134, 18573. For examples of enantioselec-
tive allylation using non-stabilized organometallic nucleo-
philes catalyzed by other transition metals, see: (i) Menard,
F.; Chapman, T. M.; Dockendorff, C.; Lautens, M. Org. Lett.
2006, 8, 4569. (j) Alexakis, A.; El Hajjaji, S.; Polet, D.;
Rathgeb, X. Org. Lett. 2007, 9, 3393. (k) Son, S.; Fu. G. C. J.
Am. Chem. Soc. 2008, 130, 2756. (l) Zhang, P.; Brozek, L. A.;
Morken, J. P. J. Am. Chem. Soc. 2010, 132, 10686. (m) Ham-
ilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc.
2
013, 135, 994. For metal-free N-heterocyclic carbene cata-
lyzed allylation, see: (n) Jackowski, O.; Alexakis, A. Angew.
Chem. Int. Ed. 2010, 49, 3346.
5
6
.
.
A Pd/Cu cooperative catalytic system proceeding through
borylated α-chiral organocopper species has recently been re-
ported for enantioselective allylboration: (a) Jia, T.; Peng, C.;
Wang, B.; Lou, Y.; Yin, X.; Wang, M. Liao, J. J. Am. Chem.
Soc. 2015, 137, 13760. For the stoichiometric addition of sul-
foxide-stabilized α-chiral organocopper species to propargyl
electrophiles, see: (b) García Ruano, J. L.; Marcos, V.; Ale-
mán, J. Angew. Chem. Int. Ed. 2008, 47, 6836.
(a) Zhu, S.; Niljianskul, N.; Buchwald, S.L. J. Am. Chem.
Soc. 2013, 135, 15746. (b) Zhu, S.; Buchwald, S.L. J. Am.
Chem. Soc. 2014, 136, 15913. (c) Niljianskul, N.; Zhu, S.;
Buchwald, S.L. Angew. Chem. Int. Ed. 2015, 54, 1638. (d).
Shi, S.; Buchwald, S.L. Nat. Chem. 2015, 7, 38. (e) Yang, Y.;
TOC graphic:
R'
R
R'
21 examples
L*CuH
Het
+
X
R
50 to 93% yield
90 to 99% ee
enantioselective
hydroallylation
Het
olefin
allylic electrophile
ACS Paragon Plus Environment