Please do not adjust margins
Journal of Materials Chemistry A
Page 10 of 12
ARTICLE
Journal Name
under current density of 250 mA cm-2, and is much higher than
the Pmax (42.5 mW cm-2) using QA functionalized copolymers
5
Yamada, H. Tanaka, B. Bae, K. MiyatDaOkeI: 1a0n.1d03M9/.CW6TaAt0a5n0a9b0eE,
J. Am. Chem. Soc., 2011, 133, 10646-10654.
N. Li and M. D. Guiver, Macromolecules, 2014, 47, 2175-
2198.
H. Ono, J. Miyake, S. Shimada, M. Uchida and K. Miyatake,
J. Mater. Chem. A, 2015, 3, 21779-21788.
S. C. Price, X. Ren, A. C. Jackson, Y. Ye, Y. A. Elabd and F.
L. Beyer, Macromolecules, 2013, 46, 7332-7340.
J. Pan, S. Lu, Y. Li, A. Huang, L. Zhuang and J. Lu, Adv.
Funct. Mater., 2010, 20, 312-319.
and Pmax (30 mW cm-2) using an imidazolium-functionalized
6
7
8
9
12,53
PPO membrane at 60
C.
Furthermore, the PES-6-QA
membrane exhibited higher Pmax (117.5 mW cm-2 under current
density of 250 mA cm-2) at 80
C than at 60 C. This is
attributed to the increased conductivity of the membrane at
elevated temperature. This suggests the side-chain-type
membranes hold promising for application in alkaline fuel cells.
Optimization of the MEA construction and operational
condition are underway in our lab.
10 J. Pan, Y. Li, L. Zhuang and J. Lu, Chem. commun., 2010, 46
,
8597-8599.
11 N. Yokota, M. Shimada, H. Ono, R. Akiyama, E. Nishino, K.
Asazawa, J. Miyake, M. Watanabe and K. Miyatake,
Macromolecules, 2014, 47, 8238-8246.
Conclusions
12 J. Ran, L. Wu, J. R. Varcoe, A. L. Ong, S. D. Poynton and T.
Xu, J. Membr. Sci., 2012, 415-416, 242-249.
13 X. Lin, J. R. Varcoe, S. D. Poynton, X. Liang, A. L. Ong, J.
In summary, the poly(ether sulfone)s bearing pendant
quaternary ammonium groups via various lengths of flexible
spacers were prepared via nucleophilic polycondensation,
demethylation and Williamson reaction. All the AEMs exhibit
clear micro-phase separation morphology due to the
immiscibility between the hydrophilic side chain and the
hydrophobic backbone. It is observed that the length of flexible
spacer linking the cationic groups and backbone has a great
influence on the performance of AEMs. The optimum
Ran, Y. Li and T. Xu, J. Mater. Chem. A, 2013, 1, 7262-7269.
14 X. Lin, X. Liang, S. D. Poynton, J. R. Varcoe, A. L. Ong, J.
Ran, Y. Li, Q. Li and T. Xu, J. Membr. Sci., 2013, 443, 193-
200.
15 C. Yang, S. Wang, W. Ma, S. Zhao, Z. Xu and G. Sun, J.
Mater. Chem. A, 2016,
16 C. Yang, S. Wang, W. Ma, L. Jiang and G. Sun, J. Mater.
Chem. A, 2015, , 8559-8565.
4, 3886-3892.
3
17 Y. Li, Y. Liu, A. M. Savage, F. L. Beyer, S. Seifert, A. M.
Herring and D. M. Knauss, Macromolecules, 2015, 48, 6523-
6533.
18 M. Zhang, J. Liu, L. An, M. D. Guiver and N. Li, J. Mater.
Chem. A, 2015, 3, 12284-1296.
19 L. Zeng, T. S. Zhao, L. An, G. Zhao and X. H. Yan, J. Membr.
Sci., 2015, 493, 340-348.
20 M. P. Kulkarni, T. J. Peckham, O. D. Thomas and S.
Holdcroft, MRS Proceedings, 2014, 1677, 1-12.
conductivity (62.7 mS cm-1, 80
C) was observed for PES-6-
QA with hexyleneoxy spacers, suggesting that too long alkyl
groups in the side chain will increase the hydrophobicity of the
membrane, which is bad for fabricating high efficient ion
conducting channels due to the reduced water content. The
Hofmann degradation of QA groups in the membrane can be
inhibited by increasing the length of flexible spacer (n
≥4)
21 Y. He, J. Pan, L. Wu, Y. Zhu, X. Ge, J. Ran, Z. Yang and T.
between the backbone and QA groups. The PES-12-QA
membrane demonstrated the highest stability after immersing in
a 1 M aqueous KOH solution at 60 C for 720 h. Single cell test
Xu, Sci. rep., 2015,
22 H. S. Dang, E. A. Weiber and P. Jannasch, J. Mater. Chem. A,
2015, , 5280-5284.
5, 13417, 1-7.
3
23 H. S. Dang and P. Jannasch, Macromolecules, 2015, 48
,
showed a moderate performance for the PES-6-QA membrane,
5742-5751.
which hold promising for application in alkaline fuel cells.
24 Z. Yang, J. Zhou, S. Wang, J. Hou, L. Wu and T. Xu, J.
Mater. Chem. A, 2015, , 15015-15019.
25 W.-H. Lee, Y. S. Kim and C. Bae, ACS Macro Letters, 2015,
, 814-818.
3
Acknowledgment
4
26 N. Li, Q. Zhang, C. Wang, Y. M. Lee and M. D. Guiver,
Financial support from the National Nature Science Foundation
of China (grant no. 21376194 & 21576226), the Nature Science
Foundation of Fujian Province of China (grant no. 2014H0043),
and the research fund for the Priority Areas of Development in
Doctoral Program of Higher Education (no. 20130121130006)
is gratefully acknowledged.
Macromolecules, 2012, 45, 2411-2419.
27 J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A.
Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K.
Nijmeijer and K. Scott, Energy Environ. Sci., 2014,
7, 3135-
3191.
28 R. A. Bartsch, W. Zhao and Z. Y. Zhang, Synth. Commun.,
1999, 29, 2393-2398.
29 C. X. Lin, Y. Z. Zhuo, A. N. Lai, Q. G. Zhang, A. M. Zhu, M.
L. Ye and Q. L. Liu, J. Membr. Sci., 2016, 513, 206-216.
30 H. Jung, K. Fujii, T. Tamaki, H. Ohashi, T. Ito and T.
Yamaguchi, J. Membr. Sci., 2011, 373, 107-111.
31 N. Hara, H. Ohashi, T. Ito and T. Yamaguchi, J. Phys. Chem.
B, 2009, 113, 4656-4663.
32 N. W. Li, T. Z. Yan, Z. Li, T. Thurn-Albrecht and W. H.
Binder, Energy Environ. Sci., 2012, 5, 7888-7892.
33 N. Li, Y. Leng, M. A. Hickner and C. Y. Wang, J. Am. Chem.
Notes and references
1
2
3
4
Y. J. Wang, J. Qiao, R. Baker and J. Zhang, Chem. Soc. rev.,
2013, 42, 5768-5787.
G. He, Z. Li, J. Zhao, S. Wang, H. Wu, M. D. Guiver and Z.
Jiang, Adv. mater., 2015, 27, 5280-5295.
A. K. Mishra, S. Bose, T. Kuila, N. H. Kim and J. H. Lee,
Prog. Polym. Sci., 2012, 37, 842-869.
J. Peron, A. Mani, X. Zhao, D. Edwards, M. Adachi, T.
Soboleva, Z. Shi, Z. Xie, T. Navessin and S. Holdcroft, J.
Membr. Sci., 2010, 356, 44-51.
Soc., 2013, 135, 10124-10133.
34 A. H. Rao, S. Nam and T.-H. Kim, J. Mater. Chem. A, 2015,
3
, 8571-8580.
35 H. Jung, H. Ohashi, T. Tamaki and T. Yamaguchi, Chem.
Letters, 2013, 42, 14-16.
10 | J. Name., 20xx, 00, 1‐10
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins