Published on Web 03/24/2006
Enantioselective Synthesis of Cyclic Enol Ethers and
All-Carbon Quaternary Stereogenic Centers Through Catalytic
Asymmetric Ring-Closing Metathesis
Ai-Lan Lee,† Steven J. Malcolmson,† Alessandra Puglisi,† Richard R. Schrock,‡ and
Amir H. Hoveyda*,†
Contribution from the Department of Chemistry, Merkert Chemistry Center, Boston College,
Chestnut Hill, Massachusetts 02467, and Department of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139
Received December 12, 2005; E-mail: amir.hoveyda@bc.edu
Abstract: The first examples of catalytic asymmetric ring-closing metathesis (ARCM) reactions of enol
ethers are reported. To identify the most effective catalysts, various chiral Mo- and Ru-based catalysts
were screened. Although chiral Ru catalysts (those that do not bear a phosphine ligand) promote ARCM
in some cases, such transformations proceed in <10% ee. In contrast, Mo-based alkylidenes give rise to
efficient ARCM and deliver the desired products in the optically enriched form. Thus, Mo-catalyzed
enantioselective transformations allow access to various five- and six-membered cyclic enol ethers in up
to 94% ee from readily available achiral starting materials. The first examples of catalytic ARCM that lead
to the formation of all-carbon quaternary stereogenic centers are also disclosed. Mechanistic models that
offer a plausible rationale for the identity of major enantiomers as well as the observed levels of
enantioselectivity are provided. Representative examples demonstrate that the enol ether moiety and the
unreacted alkene of the ARCM products can be discriminated with excellent site selectivity (>98%).
moallylic ethers.5 Metal-catalyzed ring-closing metathesis (RCM)
has been used to access small and medium ring cyclic enol
Introduction
Research in these laboratories has, in recent years, led to the
development of an assortment of Mo-1 and Ru-based2 precata-
lysts that can be used to promote olefin metathesis reactions;
several examples of such complexes are illustrated in Scheme
1. One noteworthy aspect of our programs relates to chiral
complexes that give rise to efficient enantioselective transforma-
tions. Within this context, the higher oxidation state (vs Ru-
based) systems have proven to be particularly effective for
asymmetric ring-closing metathesis (ARCM).1,3,4 Mo-based
complexes exhibit high reactivity (1-5 mol % loading) with
reactions that involve substrates bearing allylic or homoallylic
ethers or amines to deliver optically enriched unsaturated
heterocycles (>90% ee).1,3
ethers,6 and such protocols have been applied to the preparation
of natural products.7 In all the studies disclosed thus far,
however, optically enriched enol ethers are obtained by treatment
of a nonracemic substrate with an achiral Mo- or Ru-based
(3) For examples of Mo-catalyzed ARCM, see: (a) Alexander, J. B.; La, D.
S.; Cefalo, D. R.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1998,
120, 4041-4042. (b) La, D. S.; Alexander, J. B.; Cefalo, D. R.; Graf, D.
D.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1998, 120, 9720-
9721. (c) Zhu, S. S.; Cefalo, D. R.; La, D. S.; Jamieson, J. Y.; Davis, W.
M.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1999, 121, 8251-
8259. (d) Weatherhead, G. S.; Houser, J. H.; Ford, J. G.; Jamieson, J. Y.;
Schrock, R. R.; Hoveyda, A. H. Tetrahedron Lett. 2000, 41, 9553-9559.
(e) Cefalo, D. R.; Keily, A. F.; Wuchrer, M.; Jamieson, J. Y.; Schrock, R.
R.; Hoveyda, A. H. J. Am. Chem. Soc. 2001, 123, 3139-3140. (f) Kiely,
A. F.; Jernelius, J. A.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc.
2002, 124, 2868-2869. (g) Dolman, S. J.; Schrock, R. R.; Hoveyda, A. H.
Org. Lett. 2003, 5, 4899-4902. (h) Jernelius, J. A.; Schrock, R. R.;
Hoveyda, A. H. Tetrahedron 2004, 60, 7345-7351. (i) Sattely, E. S.;
Cortez, G. A.; Moebius, D. C.; Schrock, R. R.; Hoveyda, A. H. J. Am.
Chem. Soc. 2005, 127, 8526-8533.
(4) For examples of Ru-catalyzed ARCM, see: (a) Seiders, T. J.; Ward, D.
W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225-3228. (b) Van Veldhuizen, J.
J.; Kingsbury, J. S.; Garber, S. B.; Hoveyda, A. H. J. Am. Chem. Soc.
2002, 124, 4954-4955. (c) Van Veldhuizen, J. J.; Gillingham, D. G.;
Garber, S. B.; Kataoka, O.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125,
12502-12508. (d) Funk, T. W.; Berlin, J. M.; Grubbs, R. H. J. Am. Chem.
Soc. 2006, 128, 1840-1846.
(5) Louie, J.; Grubbs, R. H. Organometallics 2002, 21, 2153-2164.
(6) For representative examples of cyclic enol ether synthesis through olefin
metathesis reactions, see: (a) Fujimura, O.; Fu, G. C.; Grubbs, R. H. J.
Org. Chem. 1994, 59, 4029-4031. (b) Sturino, C. F.; Wong, J. C. Y.
Tetrahedron Lett. 1998, 39, 9623-9626. (c) Clark, J. S.; Kettle, J. G.
Tetrahedron 1999, 55, 8231-8248. (d) Rainier, J. D.; Allwein, S. P.; Cox,
J. M. J. Org. Chem. 2001, 66, 1380-1386. (e) Liu, L.; Postema, M. H. D.
J. Am. Chem. Soc. 2001, 123, 8602-8603. (f) Sutton, A. E.; Seigal, B. A.;
Finnegan, D. F.; Snapper, M. L. J. Am. Chem. Soc. 2002, 124, 13390-
13391. (g) Hekking, K. F. W.; van Delft, F. L.; Rutjes, F. P. J. T.
Tetrahedron 2003, 59, 6751-6758.
Enol ethers, a versatile class of compounds in organic
chemistry, can participate in olefin metathesis reactions.1,2
Nonetheless, particularly for electronic reasons, the reactivity
of the derived Mo-alkylidenes and Ru-based carbenes can be
significantly different than those derived from allylic or ho-
† Boston College.
‡ Massachusetts Institute of Technology.
(1) For a review on achiral and chiral Mo-based complexes and their related
olefin metathesis reactions, see: Schrock; R. R.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2003, 42, 4592-4633.
(2) (a) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A. H.
J. Am. Chem. Soc. 1999, 121, 791-799. (b) Garber, S. B.; Kingsbury, J.
S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168-
8179. For a comprehensive review on achiral and chiral Ru-based complexes
developed in these laboratories and their related olefin metathesis reactions,
see: (c) Hoveyda, A. H.; Gillingham, D. G.; Van Veldhuizen, J. J.; Kataoka,
O.; Garber, S. B.; Kingsbury, J. S.; Harrity, J. P. A. Org. Biomol. Chem.
2004, 2, 8-23.
9
10.1021/ja058428r CCC: $33.50 © 2006 American Chemical Society
J. AM. CHEM. SOC. 2006, 128, 5153-5157
5153