Journal of the American Chemical Society
Article
charge injection linked to the polarons’ diffusion in the electric
field.
(3) Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.;
Heeger, A. J. J. Chem. Soc. Chem. Commun. 1977, 578−580.
(
(
04.
4) Heeger, A. J. Rev. Mod. Phys. 2001, 73, 681−700.
5) Koezuka, H.; Tsumura, A.; Ando, T. Synth. Met. 1987, 18, 699−
CONCLUSIONS
■
7
In conclusion, we have described the synthesis and the unique
properties of a new class of soft supramolecular polymers made
of columnar stacks of tris-amide triarylamines. These one-
dimensional fibers can be oxidized to their radical cation by
light (photodoping) or electrochemically. The resulting
presence of delocalized Pauli spins and polaronic absorption
band shows that this supramolecular system has similar charge-
transport characteristics to those observed in metallic
conducting conjugated polymers. This first demonstration
that supramolecular polymers can present electronic, magnetic,
and optical signatures similar to those measured through-bond
in the best conjugated polymers extends the current under-
standing of both fields and unifies them. In addition, we have
shown that the induced through-space mixed-valence charge
transfer within their structure behave as “supramolecular
polarons” which diffuse along the fibers and fix structural
defects of the stacked structure, representing a novel
cooperative healing mechanism thanks to the presence of the
charge carrier itself. The capacity of soft supramolecular self-
(
6) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.;
Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990,
47, 539−541.
7) Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science
992, 258, 1474−1476.
3
(
1
(8) MacDiarmid, A. G. Angew. Chem., Int. Ed. 2001, 40, 2581−2590.
(9) Fabretto, M. V.; Evans, D. R.; Mueller, M.; Zuber, K.; Hojati-
Talemi, P.; Short, R. D.; Wallace, G. G.; Murphy, P. J. Chem. Mater.
2012, 24, 3998−4003.
(
(
10) Xia, Y.; Sun, K.; Ouyang, J. Adv. Mater. 2012, 24, 2436−2440.
11) Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G. E. Adv.
Mater. 2010, 22, 673−685.
12) Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.;
Inbasekaran, M.; Wu, W.; Woo, E. P. Science 2000, 290, 2123−2126.
13) Bubnova, O.; Khan, Z. U.; Wang, H.; Braun, S.; Evans, D. R.;
(
(
Fabretto, M.; Hojati-Talemi, P.; Dagnelund, D.; Arlin, J.-B.; Geerts, Y.
H.; Desbief, S.; Breiby, D. W.; Andreasen, J. W.; Lazzaroni, R.; Chen,
W. M.; Zozoulenko, I.; Fahlman, M.; Murphy, P. J.; Berggren, M.;
Crispin, X. Nat. Mater. 2014, 13, 190−194.
(
14) Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.;
Berggren, M.; Crispin, X. Nat. Mater. 2011, 10, 429−433.
15) Lin, W.-P.; Liu, S.-J.; Gong, T.; Zhao, Q.; Huang, W. Adv. Mater.
014, 26, 570−606.
(16) Bredas, J.-L.; Street, G. B. Acc. Chem. Res. 1985, 18, 309−315.
17) Kaiser, A. B. Adv. Mater. 2001, 13, 927−941.
(18) Hoffmann, S. T.; Jaiser, F.; Hayer, A.; Bassler, H.; Unger, T.;
Athanasopoulos, S.; Neher, D.; Kohler, A. J. Am. Chem. Soc. 2013, 135,
772−1782.
19) Kohlman, R. S.; Zibold, A.; Tanner, D. B.; Ihas, G. G.; Ishiguro,
T.; Min, Y. G.; MacDiarmid, A. G.; Epstein, A. J. Phys. Rev. Lett. 1997,
8, 3915−3918.
20) Lee, K.; Cho, S.; Heum Park, S.; Heeger, A. J.; Lee, C.-W.; Lee,
S.-H. Nature 2006, 441, 65−68.
21) Cohen, M. J.; Coleman, L. B.; Garito, A. F.; Heeger, A. J. Phys.
Rev. B 1974, 10, 1298−1307.
22) Moulin, E.; Niess, F.; Maaloum, M.; Buhler, E.; Nyrkova, I.;
Giuseppone, N. Angew. Chem., Int. Ed. 2010, 49, 6974−6978.
23) Faramarzi, V.; Niess, F.; Moulin, E.; Maaloum, M.; Dayen, J.-F.;
Beaufrand, J.-B.; Zanettini, S.; Doudin, B.; Giuseppone, N. Nat. Chem.
44−46
assemblies to self-optimize their conduction properties
provides alternatives to conventional organic metals in terms of
responsiveness, healing, and processability, which is of interest
for applications in organic electronics and spintronics.
(
2
(
ASSOCIATED CONTENT
Supporting Information
̈
■
̈
*
S
1
(
Synthetic protocols and characterization of TATA 1−3,
organogelation properties, supplementary AFM characteriza-
tions, X-ray scattering data, DFT calculations, local and
extended charge transfer analyses, and additional conductivity
7
(
(
AUTHOR INFORMATION
(
(
Notes
2
(
(
012, 4, 485−490.
The authors declare no competing financial interests.
24) Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335, 813−817.
25) Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L.
ACKNOWLEDGMENTS
■
Nature 2008, 451, 977−980.
(26) Yang, Y.; Urban, M. W. Chem. Soc. Rev. 2013, 42, 7446−7467.
The research leading to these results has received funding from
the European Research Council under the European
Community’s Seventh Framework Program (FP7/2007-
(
27) Non-hydrogen-bonded amides have N-H stretching frequency
−1
−1
between 3400 and 3500 cm as opposed to 3350−3100 cm for
hydrogen bonded amides. Likewise the CO stretch shifts from
2
013)/ERC Starting Grant Agreement No. 257099 (N.G.).
−1
around 1685 to 1650 cm upon hydrogen bonding. The IR frequency
shifts we report for both functional groups correspond to the presence
We wish to thank the Centre National de la Recherche
Scientifique (CNRS), the COST action (CM 1304), the
international center for Frontier Research in Chemistry
̈
of hydrogen bonded amides. See: Pretsch, E. Buhlmann, P.;
Badertscher, M. Structure Determination of Organic Compounds, 4th
ed.; Springer: New York, 2009.
(
icFRC), the Laboratory of Excellence for Complex System
Chemistry (LabEx CSC), the University of Strasbourg (UdS),
and the Institut Universitaire de France (IUF). We are grateful
to ANR (Agence Nationale de la Recherche) for financial
support (projects STANWs and Multiself). We thank Prof. T.
W. Ebbesen for fruitful discussions on this work. We thank Dr.
Marc Schmutz for FFEM replicas preparation.
(28) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157−167.
(29) Zhao, Y.; Truhlar, D. Theor. Chem. Acc. 2008, 120, 215−241.
(30) Steinmann, S. N.; Piemontesi, C.; Delachat, A.; Corminboeuf, C.
J. Chem. Theory Comput. 2012, 8, 1629−1640.
31) Heckmann, A.; Lambert, C. Angew. Chem., Int. Ed. 2012, 51,
26−392.
32) Robin, M. B.; Day, P. Mixed valence chemistry - A survey and
classification. In Advances in Inorganic Chemistry and Radiochemistry;
Emeleus, H. J., Sharpe, A. G., Eds.; Academic Press Inc.: New York,
1968; Vol. 10, pp 274−422.
(
3
(
REFERENCES
1) Forrest, S. R. Nature 2004, 428, 911−918.
2) Miller, R. D.; Chandross, E. A. Chem. Rev. 2010, 110, 1−2.
■
(
(
́
1
1387
dx.doi.org/10.1021/ja5044006 | J. Am. Chem. Soc. 2014, 136, 11382−11388