conditions of ring-opening reactions. The decreasing catalytic
activity of the materials in successive reaction cycles can thus be
explained by a collapsed pore structure of the materials and
slight chemical degradation of the amine and ammonium
substructures. Nevertheless, the new materials are still among the
most efficient heterogeneous catalyst systems for these
3 D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka and G. D. Stucky,
J. Am. Chem. Soc., 1998, 120, 6024–6036.
4
D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson,
B. F. Chmelka and G. D. Stucky, Science, 1998, 279, 548–552.
5 Y. Wan and D. Y. Zhao, Chem. Rev., 2007, 107, 2821–2860.
6 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge,
K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard,
S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem.
Soc., 1992, 114, 10834–10843.
65
reactions.
7
8
9
S. K. Jana, A. Mochizuki and S. Namba, Catal. Surv. Asia, 2004, 8, 1–
3.
S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna and O. Terasaki, J.
Am. Chem. Soc., 1999, 121, 9611–9614.
T. Asefa, M. J. MacLachan, N. Coombs and G. A. Ozin, Nature,
1999, 402, 867–871.
1
5
. Conclusion
In conclusion, we report the tuning of the pore size in silica
hybrid materials obtained via ‘anionic templating’ with cationic
ammonium precursors. Although the formation mechanism for
the generation of these nanostructured silica hybrid phases
fundamentally differs from classical hydrolysis–poly-
condensation methods for the synthesis of PMO type materials
and is governed by ionic interactions between the surfactant and
the ‘organo-cationic’ part of the precursor, pore size control was
achieved following standard methods, in particular by the
addition of swellers (TMB) to the hydrolysis–polycondensation
mixtures. This approach appears as a versatile method to tune
the morphology in nanostructured silica hybrid materials
bearing amine and ammonium groups and allows to obtain
1
0 B. J. Melde, B. T. Holland, C. F. Blanford and A. Stein, Chem.
Mater., 1999, 11, 3302–3308.
11 W. J. Hunks and G. A. Ozin, J. Mater. Chem., 2005, 15, 3716–3724.
12 S. Fujita and S. Inagaki, Chem. Mater., 2008, 20, 891–908.
13 N. Mizoshita, T. Tani and S. Inagaki, Chem. Soc. Rev., 2011, 40, 789–
8
00.
1
4 F. Hoffmann, M. Cornelius, J. Morell and M. Froba, Angew. Chem.,
Int. Ed., 2006, 45, 3216–3251.
15 A. Ide, R. Voss, G. Scholz, G. A. Ozin, M. Antonietti and A. Thomas,
Chem. Mater., 2007, 19, 2649–2657.
6 P. Y. Wang, X. Liu, J. Yang, Y. Yang, L. Zhang, Q. H. Yang and
C. Li, J. Mater. Chem., 2009, 19, 8009–8014.
1
1
7 J. Morell, S. Chatterjee, P. J. Klar, D. Mauder, I. Shenderovich,
F. Hoffmann and M. Froba, Chem.–Eur. J., 2008, 14, 5935–5940.
18 S. MacQuarrie, M. P. Thompson, A. Blanc, N. J. Mosey,
ꢁ
materials with pore diameters in the range from 20 to 60 A.
R. P. Lemieux and C. M. Crudden, J. Am. Chem. Soc., 2008, 130,
14099–14101.
19 S. Polarz and A. Kuschel, Adv. Mater., 2006, 18, 1206–1209.
The original materials appear as versatile organocatalysts for
a set of reactions. We show that both amine and ammonium
functionalized PMO type materials show interesting catalytic
properties and efficiently promote Knoevenagel and Henry
reactions. They catalyze also the formation of monoglycerides by
ring-opening reactions of glycidol with fatty acids. In this way,
amine and ammonium containing PMO materials show inter-
esting features not only concerning the rational design of func-
tional porous solids and materials engineering. Due to their ease
of derivatisation, these systems are also interesting for the elab-
oration of a whole new class of functional materials. In this way,
these original functional solids appear as a platform for the
development of a large variety of functional catalytic materials.
This study highlights the huge potential of i-silica materials in
this area.
20 T. Tani, N. Mizoshita and S. Inagaki, J. Mater. Chem., 2009, 19,
451–4456.
21 N. Mizoshita, Y. Goto, M. P. Kapoor, T. Shimada, T. Tani and
4
S. Inagaki, Chem.–Eur. J., 2009, 15, 219–226.
22 J. Alauzun, A. Mehdi, C. Reye and R. J. P. Corriu, J. Mater. Chem.,
007, 17, 349–356.
3 Q. H. Yang, J. Liu, L. Zhang and C. Li, J. Mater. Chem., 2009, 19,
945–1955.
2
2
1
24 A. Kuschel and S. Polarz, J. Am. Chem. Soc., 2010, 132, 6558–
6565.
2
2
2
2
2
3
5 V. Rebbin, R. Schmidt and M. Froba, Angew. Chem., Int. Ed., 2006,
5, 5210–5214.
6 N. Mizoshita, Y. Goto, T. Tani and S. Inagaki, Adv. Mater., 2009, 21,
4798–4801.
7 H. G. Zhu, D. J. Jones, J. Zajac, R. Dutartre, M. Rhomari and
J. Roziere, Chem. Mater., 2002, 14, 4886–4894.
8 M. C. Burleigh, S. Jayasundera, M. S. Spector, C. W. Thomas,
M. A. Markowitz and B. P. Gaber, Chem. Mater., 2004, 16, 3–5.
9 J. Morell, M. Gungerich, G. Wolter, J. Jiao, M. Hunger, P. J. Klar
and M. Froba, J. Mater. Chem., 2006, 16, 2809–2818.
0 E. B. Cho, D. Kim and M. Jaroniec, Langmuir, 2007, 23, 11844–
4
Acknowledgements
Samir El Hankari and Peter Hesemann thank the program
AVERROES (Erasmus Mundus Programme of the European
Community) for a doctoral scholarship (SEH) and post-doctoral
fellowship (PH). Financial support of the ‘Reseau de Recherche
1
31 O. Olkhovyk and M. Jaroniec, Ind. Eng. Chem. Res., 2007, 46, 1745–
1849.
1751.
2 R. M. Grudzien, B. E. Grabicka, S. Pikus and M. Jaroniec, Chem.
Mater., 2006, 18, 1722–1725.
3 B. E. Grabicka and M. Jaroniec, Microporous Mesoporous Mater.,
2009, 119, 144–149.
4 M. C. Burleigh, M. A. Markowitz, E. M. Wong, J. S. Lin and
B. P. Gaber, Chem. Mater., 2001, 13, 4411–4412.
5 C. Vercaemst, P. E. de Jongh, J. D. Meeldijk, B. Goderis, F. Verpoort
and P. Van Der Voort, Chem. Commun., 2009, 4052–4054.
36 X. F. Zhou, S. Z. Qiao, N. Hao, X. L. Wang, C. Z. Yu, L. Z. Wang,
3
3
3
3
3
, CPDD’ of the CNRS is gratefully acknowledged. The authors
are indebted to Philippe Gaveau and Christine Biolley (Institut
Charles Gerhardt de Montpellier) for solid state NMR
measurements. This work has been supported by the French
National Research Agency (ANR) through the ‘Environmentally
Friendly Heterogeneous and Homogeneous Catalysis’
programme (ANR-08-EFC-04-01).
D. Y. Zhao and G. Q. Lu, Chem. Mater., 2007, 19, 1870–1876.
3
7 R. Ciriminna, P. Hesemann, J. J. E. Moreau, M. Carraro,
S. Campestrini and M. Pagliaro, Chem.–Eur. J., 2006, 12, 5220–5224.
8 V. Polshettiwar, P. Hesemann and J. J. E. Moreau, Tetrahedron Lett.,
3
References
2
007, 48, 5363–5366.
1
G. J. D. Soler-Illia, C. Sanchez, B. Lebeau and J. Patarin, Chem. Rev.,
002, 102, 4093–4138.
C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and
39 V. Polshettiwar, P. Hesemann and J. Moreau, Tetrahedron, 2007, 63,
6784–6790.
40 B. Lee, H. J. Im, H. M. Luo, E. W. Hagaman and S. Dai, Langmuir,
2005, 21, 5372–5376.
2
2
J. S. Beck, Nature, 1992, 359, 710–712.
6
954 | J. Mater. Chem., 2011, 21, 6948–6955
This journal is ª The Royal Society of Chemistry 2011