10.1002/chem.201903552
Chemistry - A European Journal
RESEARCH ARTICLE
[8]
Examples in Mannich and related reactions: a) G. List, J. Am. Chem.
Soc. 2000, 122, 9336; b) A. Córdova, W. Notz, G. Zhong, J. M.
Betancort, C. F. Barbas III, J. Am. Chem. Soc. 2002, 124, 1842; c) H.
Zhang, M. Mifsud, F. Tanaka, C. F. Barbas, III, J. Am. Chem. Soc. 2006,
128, 9630; d) H. Zhang, S. Mitsumori, N. Utsumi, M. Imai, N. Garcia-
Delgado, M. Mifsud, K. Albertshofer, P. H.-Y. Cheong, K. N. Houk, F.
Tanaka, C. F. Barbas, III, J. Am. Chem. Soc. 2008, 130, 875; e) Q.-
Xiang, Guo, H. Liu, C. Guo, S.-W. Luo, Y. Gu, L.-Z. Gong, J. Am. Chem.
Soc. 2007, 129, 3790; f) N. Li, X.-H. Chen, J. Song, S.-W. Luo, W. Fan,
L.Z. Gong, J. Am. Chem. Soc. 2009, 131, 15301; g) Mattia, R. Monaco,
P. Renzi, D. M. S. Schietroma, M. Bella, Org. Lett. 2011, 13, 4546; h) J.
L. Jeffrey, F. R. Petronijević, D. W. C. MacMillan, J. Am. Chem. Soc.
2015, 137, 8404.
concept of buffering in non-aqueous solutions, simple ways to
control chemical reactions have been realized.
The buffering molecules suppress isomerization and
decomposition reactions of various compounds and alter the
products of chemical transformations in non-aqueous solutions,
allowing access to products that are not generated in the
absence of buffering molecules. The use of buffering molecules
in non-aqueous solvents provides a strategy to control chemical
reactions and expands the range of compounds that can be
synthesized.
[9]
Examples in Michael and other reactions: a) H. Huang, E. N. Jacobsen,
J. Am. Chem. Soc. 2006, 128, 7170; b) S. V. Pansare, K. Pandya, J.
Am. Chem. Soc. 2006, 128, 9624; c) C. L. Cao, M.-C. Ye, X.-L. Sun, Y.
Tang, Org. Lett. 2006, 8, 2901; d) S. H. McCooey, S. J. Connon, Org.
Lett. 2007, 9, 599; e) K. Liu, H.-F. Cui, J. Nie, K.Y. Dong, X.-J. Li, J.A.
Ma, Org. Lett. 2007, 9, 923; f) B. Tang, X. Zeng, Y. Lu, P. J. Chua, G.
Zhong, Org. Lett. 2009, 9, 1927.
Acknowledgements
We thank Dr. Michael Chandro Roy, Research Support Division,
Okinawa Institute of Science and Technology Graduate
University for mass analyses. This study was supported by the
Okinawa Institute of Science and Technology Graduate
University.
[10] a) B. Bradshaw, G. Etxebarria-Jardi, J. Bonjoch, J. Am. Chem. Soc.
2010, 132, 5966. b) D. J. Burns, S. Mommer, P. O'Brien, R. J. K. Taylor,
A. C. Whitwood, S. Hachisu, Org. Lett. 2013, 15, 394. c) B. Bradshaw,
G. Etxebarria-Jardi, J. Bonjoch, S. F. Viozquez, G. Guillena, C. Najera,
Adv. Synth. Catal. 2009, 351, 2482. F. Zhang, Y. Wei, X. Wu, H. Jiang,
W. Wang, H. Li, J. Am. Chem. Soc. 2014, 136, 13963; e) N. Thies, E.
Haak, Angew. Chem. Int. Ed. 2015, 54, 4097; Angew. Chem. 2015, 127,
4170.
Keywords: aldol reaction • organocatalysis • Michael addition •
reaction control • spiro compounds
[1]
D. C. Blakemore, L. Castro, I. Churcher, D. C. Rees, A. W. Thomas, D.
M. Wilson, A. Wood, Nat. Chem. 2018, 10, 383.
[11] In the synthesis of starting materials: a) Z. G. Hajos, D. R. Parrish, J.
Org. Chem. 1974, 39, 1612; b) P. Zho, L. Zhang, S. Luo, J.-P. Cheng, J.
Org. Chem. 2012, 77, 2526; c) X. Wu, Z. Chen, Y.-B. Bai, V. M. Dong, J.
Am. Chem. Soc. 2016, 138, 12013.
[2]
[3]
V. S. Stoll, J. S. Blanchard, Methods Enzymol. 2009, 463, 43.
C. Reichardt, T. Welton, Solvents and Solvent Effects in Organic
Chemistry, Wiley-VCH, 2010.
[12] J.-R. Huang, M. Sohail, T. Taniguchi, K. Monde, F. Tanaka, Angew.
Chem. Int. Ed. 2017, 56, 5853; Angew. Chem. 2017, 129, 5947.
[13] M. Sohail, F. Tanaka, Communications Chem. 2019, 2, 73, doi:
10.1038/s42004-019-0177-5.
[4]
a) R. K. Schmidt, K. Muther, C. Muck-Lichtenfeld, S. Grimme, M.
Oestreich, J. Am. Chem. Soc. 2012, 134, 4421; b) M. J. R. Richter, M.
Schneider, M. Brandstatter, S. Krautwald, E. M. Carreira, J. Am. Chem.
Soc. 2018, 140, 16704.
[14] A. V. Malkov, M. K. Kabeshov, M. Bella, O. Kysllka, D. A. Malyshev, K.
Pluhackova, P. Kocovsky, Org. Lett. 2007, 9, 5473.
[5]
a) F. G. Bordwell, Acc. Chem. Res. 1988, 21, 456; b) A. Kütt, S.
Selberg, I. Kaljurand, S. Tshepelevitsh, A. Heering, A. Darnell, K.
Kaupmees, M. Piirsalu, I. Leito, Tetrahedron Lett. 2018, 59, 3738.
P. V. Chouthaiwale, R. D. Aher, F. Tanaka, Angew. Chem. Int. Ed.
2018, 57, 13298; Angew. Chem. 2018, 130, 13482.
[15] N. Duangdee, W. Harnying, G. Rulli, J.-M. Neudorfl, H. Groger, A.
Berkessel, J. Am. Chem. Soc. 2012, 134, 11196.
[6]
[7]
[16] L. J. Macpherson, A. E. Dubin, M. J. Evans, F. Marr, P. G. Schultz, B. F.
Cravatt, A. Patapoutian, Nature 2007, 445, 541.
Examples in aldol and related reactions: a) Y. M. A Yamada, N.
Yoshikawa, H. Sasai, M. Shibasaki, Angew. Chem. Int. Ed. 1997, 36,
1871; Angew. Chem. 1997, 109, 1942; b) B. M. Trost, H. Ito, J. Am.
Chem. Soc. 2000, 122, 12003; c) B. M. Trost, S. Shin, J. A. Sclafani, J.
Am. Chem. Soc. 2005, 127, 8602; d) B. List, R. A. Lerner, C. F. Barbas
III, J. Am. Chem. Soc. 2000, 122, 2395; e) K. Sakthivel, W. Notz, T. Bui,
C. F. Barbas III, J. Am. Chem. Soc. 2001, 123, 5260; f) H. Torii, M.
Nakadai, K. Ishihara, S. Saito, H. Yamamoto, Angew. Chem. Int. Ed.
2004, 43, 1983; Angew. Chem. 2004, 116, 2017; g) Z. Tang, Z.-H.
Yang, X.-H. Chen, L.-F. Cun, A.-Q. Mi, Y.-Z. Jiang, L.-Z. Gong, J. Am.
Chem. Soc. 2005, 127, 9285; h) S. Samanta, C.-G. Zhao, J. Am. Chem.
Soc. 2006, 126, 7442; i) Z. Tang, L.-F. Cun, X. Cui, A.Q. Mi, Y.-Z. Jian,
L.-Z. Gong, Org. Lett. 2006, 8, 1263; j) S. Luo, H. Xu, J. Li, L. Zhang,
J.-P. Chen, J. Am. Chem. Soc. 2007, 129, 3074; k) S. Luo, J. Li, H. Xu,
L. Zhang, J.-P. Cheng, Org. Lett. 2007, 9, 3675; l) X.-J. Wang, Y. Zhao,
J.-T. Liu, Org. Lett. 2007, 9, 1343; m) J. Liu, Z. Yang, Z. Wang, F.
Wang, X. Chen, X. Liu, X. Feng, Z. Su, C. Hu, J. Am. Chem. Soc. 2008,
130, 5654; n) K. Kakayama, K. Maruoka, J. Am. Chem. Soc. 2008, 130,
17666; o) A. Odedra, P. H. Seeberger, Angew. Chem. Int. Ed. 2009, 48,
2699; Angew. Chem. 2009, 121, 2737; p) Q. Guo, M. Bhanushali, C.-G.
Zhao, Angew. Chem. Int. Ed. 2010, 49, 9460; Angew. Chem. 2010, 122,
9650; q) S. A. Moteki, J. Han, S. Arimitsu, M. Akakura, K. Nakayama, K.
Maruoka, Angew. Chem. Int. Ed. 2012, 51, 1187; Angew. Chem. 2012,
124, 1213; r) F. R. Petronijević, M. Nappi, D. W. C. MacMillan, J. Am.
Chem. Soc. 2013, 135, 18323.
[17] K. Mai, G. Patil, J. Org. Chem. 1986, 51, 3545.
[18] a) H.-L. Cui, F. Tanaka, Chem. Eur. J. 2013, 19, 6213; b) M. Pasha, M.
Sohail, F. Tanaka, Heterocycles, in press, doi: 10.3987/COM-19-S(F)26.
[19] a) L. Wang, S. Li, M. Blumel, R. Puttreddy, A. Peuronen, K. Rissanen,
D. Enders, Angew. Chem. Int. Ed. 2017, 56, 8516; Angew. Chem. 2017,
129, 8636; b) Z. Zhou, Z.-X. Wang, Y.-C. Zhou, W. Xiao, Q. Ouyang, W.
Du, Y.-C. Chen, Nat. Chem. 2017, 9, 590; c) K. Jiang, Z.-J. Jia, X. Yin,
L. Wu, Y.-C. Chen, Org. Lett. 2010, 12, 2766; d) L.-L. Zhang, J.-W.
Zhang, S.-H. Xiang, Z. Guo, B. Tan, Org. Lett. 2018, 20, 6022.
[20] B. M. Bocknack, L.-C. Wang, M. J. Krische, Proc. Natl. Acad. Sci. USA,
2004, 101, 5421.
[21] CCDC 1877688 (compound 28) contains the supplementary
crystallographic data for this paper. The data can be obtained free of
charge from The Cambridge Crystallographic Data Centre.
[22] E. M. Arnett, J. A. Harrelson Jr. J. Am. Chem. Soc. 1987, 109, 809.
[23] Y. Fu, L. Liu, R.-Q. Li, R. Li, Q.-X. Guo, J. Am. Chem. Soc. 2004, 126,
814.
[24] M. Meot-Ner, J. Am. Chem. Soc. 1983, 105, 4906.
This article is protected by copyright. All rights reserved.