relay process of the following three domino sequences
a Mannich-type reaction with benzylamine 2b and formal-
dehyde 3 to give intermediate 6. The presence of formalde-
hyde promotes the amine-aldehyde dehydration-cyclization
process to afford the target compound 4ab. Significantly,
these reactions occurred in a catalyst-free fashion with high
selectivity and atom efficiency. To our knowledge, the use
of three different catalyst-free reactions, namely, hydro-
amination, Mannich-type reaction, and sequent dehydration-
cyclization, has not been reported previously.
(Scheme 1): (1) two-component hydroamination; (2) three-
Screening of the reaction conditions established the
suitable solvents and the mole ratio of reactants for the
desired MCRs (Table 1). It was exciting that the chosen
Table 1. Optimization of Reaction Conditions for the
Multicomponent Reactionsa
component Mannich-type reaction; (3) two-component amine-
aldehyde dehydration-cyclization process.
But-2-ynedioic acid diethyl ester 1 reacts with aniline 2a,
formaldehyde 3, and benzylamine 2b to afford diethyl
1
:2a:3:2b
entry
solvent
[mole ratio]
t (h)
yield (%)b
1
2
3
4
5
6
7
8
9
dioxane
DMF
MeCN
toluene
DMSO
Et3N
none
DMF
DMF
DMF
1:1:6:2
1:1:6:2
1:1:6:2
1:1:6:2
1:1:6:2
1:1:6:2
1:1:6:2
1:1:6:1.2
1:1:6:1
1:1:6:1.1
1:1:3:1.1
1:1:4:1.1
5
1
3
3
3
3
3
1
1
1
1
1
72
92
86
83
85
1
-benzyl-3-phenyl-1,2,3,6-tetrahydropyrimidine-4,5-dicar-
boxylate 4ab, one of the tetrasubstituted tetrahydropyrim-
idines with R- and â-amino acid building blocks, in excellent
yield (Scheme 1, 92%).12 The hydroamination of but-2-
ynedioic acid diethyl ester 1 with aniline 2a could rapidly
63
13
complex
93
form the active intermediate 5, which would then undergo
84
92
78
92
(7) For some examples on the synthesis of substituted tetrahydro-
1
1
0
1
pyrimidines, see: (a) Kang, S. H.; Kang, S. Y.; Lee, H. S.; Buglass, A. J.
Chem. ReV. 2005, 105, 4537. (b) Adamo, M. F. A.; Baldwin, J. E.;
Adlington, R. M. J. Org. Chem. 2005, 70, 3307. (c) Prasad, B. A. B.; Bisai,
A.; Singh, V. K. Org. Lett. 2004, 6, 4829. (d) Clark, J. D.; Collin, J. T.;
Kleine, H. P.; Weisenburger, G. A.; Anderson, D. K. Org. Process Res.
DeV. 2004, 8, 571. (e) Adib, M.; Yavari, H.; Mollahosseini, M. Tetrahedron
Lett. 2004, 45, 1803. (f) Christian, D.; Jacqueline, C. S. W.; Mackay, D.
B.; Roch, M. A. L. Tetrahedron Lett. 2004, 45, 7197. (g) When, P. M.;
Bois, J. D. J. Am. Chem. Soc. 2002, 124, 12950. (h) Folkers, K.; Johnson,
T. B. J. Am. Chem. Soc. 2002, 124, 3784. (i) Cho, H.; Shima, K.;
Hayashimatsu, M.; Ohnaka, Y.; Mizuno, A.; Takeuchi, Y. J. Org. Chem.
DMF
DMF
12
a
All reactions were carried out in DMF (2 mL) at 100 °C using the
substrates according to the indicated ratio in the mmol scale. Isolated
yields.
b
solvents, such as dioxane, N,N-dimethylformamide (DMF),
acetonitrile (MeCN), toluene, dimethyl sulfoxide (DMSO),
3
N), were suitable for the MCRs (Table
, entries 1-6). DMF proved to be the best one among them
1
1
985, 50, 4227. (j) Zamri, A.; Sirockin, F.; Abdallah, M. A. Tetrahedron
999, 55, 5157. (k) Ohta, S.; Hinata, Y.; Yamashita, M.; Kawasaki, I.; Jinda,
and triethylamine (Et
Y.; Horie, S. Chem. Pharm. Bull. 1994, 42, 1730. (l) Carboni, B.; Toupet,
L.; Carrie, et R. Tetrahedron 1987, 43, 2293.
1
(
8) For recent examples on multicomponent reactions, see: (a) Ohno,
H.; Ohta, Y.; Oishi, S.; Fujii, N. Angew. Chem., Int. Ed. 2007, 46, 2295.
b) Bonne, D.; Dekhane, M.; Zhu, J. P. Angew. Chem., Int. Ed. 2007, 46,
2
4
(Table 1, entry 2). Under solvent-free conditions, a complex
result was obtained (Table 1, entry 7). To modulate the ratio
of reactants and improve the yield, we examined various
ratios of but-2-ynedioic acid diethyl ester 1, aniline 2a,
formaldehyde 3, and benzylamine 2b by using DMF as the
solvent (Table 1, entries 8-12). The best result was obtained
when but-2-ynedioic acid diethyl ester 1/aniline 2a/formal-
dehyde 3/benzylamine 2b ) 1:1:4:1.1-1.2.
(
485. (c) Pinto, A.; Neuville, L.; Zhu, J. P. Angew. Chem., Int. Ed. 2007,
6, 3291 and references therein. (d) Komagawa, S.; Saito, S. Angew. Chem.,
Int. Ed. 2006, 45, 2446. (e) Yoshida, H.; Fukushima, H.; Ohshita, J.; Kunai,
A. J. Am. Chem. Soc. 2006, 128, 11040. (f) Dondas, H. A.; Fishwick, C.
W. G.; Gai, X.; Grigg, R.; Kilner, C.; Dumrongchai, N.; Kongkathip, B.;
Kongkathip, N.; Polysuk, C.; Sridharan, V. Angew. Chem., Int. Ed. 2005,
4
4, 7570. (g) Pache, S.; Lautens, M. Org. Lett. 2003, 5, 4827.
9) For recent examples on domino reactions, see: (a) Miyamoto, H.;
Okawa, Y.; Nakazaki, A.; Kobayashi, S. Angew. Chem., Int. Ed. 2006, 45,
274. (b) Tietze, L. F.; Sommer, K. M.; Zinngrebe, J.; Stecker, F. Angew.
(
2
(12) For our early work on alkyne chemistry, see: (a) Huang, J.; Zhou,
L.; Jiang, H. Angew. Chem., Int. Ed. 2006, 45, 1945. (b) Jiang, H.; Tang,
J.; Wang, A.; Deng, G.; Yang, S. Synthesis 2006, 1155. (c) Wang, Y.; Jiang,
H.; Liu, H.; Liu, P. Tetrahedron Lett. 2005, 46, 3935. (d) Li, J.; Jiang, H.;
Chen, M. J. Org. Chem. 2001, 66, 3627. (e) Li, J.; Jiang, H. Chem. Commun.
1999, 2369. (f) Li, J.; Jiang, H.; Feng, A.; Jia, L. J. Org. Chem. 1999, 64,
5984.
Chem., Int. Ed. 2005, 44, 257. (c) Yamamoto, Y.; Hayashi, H.; Saigoku,
T.; Nishiyama, H. J. Am. Chem. Soc. 2005, 127, 10804. (d) Tietze, L. F.;
Ila, H.; Bell, H. P. Chem. ReV. 2004, 104, 3453.
(10) For a recent example on one-pot synthesis, see: Siamaki, A. R.;
Arndtsen, B. A. J. Am. Chem. Soc. 2006, 128, 6050.
11) For recent books, see: (a) Multicomponent Reactions; Zhu, J.,
(
Bienaym e´ , H., Eds.; Wiley-VCH: Weinheim, 2005. (b) Domino Reactions
in Organic Synthesis; Tietze, L.F., Brasche, G., Gericke, K., Eds.; Wiley-
VCH: Weinheim, 2006.
(13) Intermediate 5 could be isolated as a pure compound and then react
with benzylamine and formaldehyde to form the same product 4ab. See
Supporting Information for the detailed characterization data of 5.
4112
Org. Lett., Vol. 9, No. 21, 2007