6701
J. Chem. Phys., Vol. 114, No. 15, 15 April 2001
The reaction HϩH O→OHϩH
2
2
3
3
3
3
4
5
A. Bettens, M. A. Collins, M. J. T. Jordon, and D. H. Zhang, ibid. 112,
J. M. Bowman and G. C. Schatz, Annu. Rev. Phys. Chem. 46, 169 ͑1995͒.
D. C. Clary, Science 279, 1879 ͑1998͒.
P. Casavecchia, N. Balucani, and G. G. Volpi, Annu. Rev. Phys. Chem.
50, 347 ͑1999͒; P. Casavecchia, Rep. Prog. Phys. 63, 355 ͑2000͒.
G. C. Schatz, Science 290, 950 ͑2000͒.
M. Brouard, I. Burak, G. A. J. Markillie, K. McGrath, and C. Vallance,
Chem. Phys. Lett. 281, 97 ͑1997͒.
M. Alagia, N. Balucani, P. Casavecchia, D. Stranges, and G. G. Volpi, J.
Chem. Phys. 98, 2459 ͑1993͒.
M. Alagia, N. Balucani, P. Casavecchia, D. Stranges, G. G. Volpi, D. C.
Clary, A. Kliesch, and H.-J. Werner, Chem. Phys. 207, 389 ͑1996͒.
B. R. Strazisar, C. Lin, and H. F. Davis, Science 290, 958 ͑2000͒.
M. Brouard and J. P. Simons, in Chemical Dynamics and Kinetics of
Small Free Radicals, edited by A. Wagner and K. Liu ͑World Scientific,
Singapore, 1995͒, p. 795; A. J. Alexander, M. Brouard, K. S. Kalogerkis,
and J. P. Simons, Chem. Soc. Rev. 27, 405 ͑1998͒; J. P. Simons, Faraday
Discuss. 113, 1 ͑1999͒.
1
9
0162 ͑2000͒; D. H. Zhang, M. A. Collins, and S.-Y. Lee, Science 290,
61 ͑2000͒.
8
9
G. C. Schatz, J. L. Colton, and M. C. Grant, J. Phys. Chem. 88, 2971
1984͒; K. Kudla and G. C. Schatz, J. Chem. Phys. 98, 4644 ͑1993͒.
J. Palma, J. Echave, and D. C. Clary, J. Chem. Soc., Faraday Trans. 93,
41 ͑1997͒.
3
6
͑
37
38
39
8
1
1
0
1
K. S. Bradley and G. C. Schatz, J. Chem. Phys. 108, 7994 ͑1998͒.
G. Lendvay, K. S. Bradley, and G. C. Schatz, J. Chem. Phys. 110, 2963
͑1999͒; G. C. Schatz, G. Wu, G. Lendvay, D.-C. Fang, and L. B. Harding,
Faraday Discuss. 113, 151 ͑1999͒.
J. F. Castillo and J. Santamaria, J. Phys. Chem. A 104, 10414 ͑2000͒.
J. F. Castillo, F. J. Aoiz, L. Banares, and J. Santamaria, Chem. Phys. Lett.
1
1
2
3
40
41
3
29, 517 ͑2000͒.
1
1
4
5
D. C. Clary, J. Chem. Phys. 95, 7298 ͑1991͒; 96, 3656 ͑1992͒; G. Nyman
and D. C. Clary, ibid. 99, 7774 ͑1993͒.
H. Szichman and M. Baer, J. Chem. Phys. 101, 2081 ͑1994͒; Chem. Phys.
Lett. 242, 285 ͑1995͒; H. Szichman, M. Baer, and H. Nakamura, J. Chem.
Phys. 107, 3521 ͑1997͒; H. Szichman, M. Baer, H. R. Volpp, and J.
Wolfrum, ibid. 111, 567 ͑1999͒.
4
4
2
3
M. Brouard, I. Burak, S. D. Gatenby, D. M. Joseph, P. O’Keeffe, G. A. J.
Markillie, and D. Minayev ͑unpublished͒.
16
M. Brouard, I. Burak, S. D. Gatenby, and G. A. J. Markillie, Chem. Phys.
Lett. 287, 682 ͑1998͒; M. Brouard, I. Burak, S. D. Gatenby, D. Hart, and
D. Minayev, J. Chem. Phys. 110, 11335 ͑1999͒; M. Brouard, S. D.
Gatenby, D. M. Joseph, and C. Vallance, ibid. 113, 3162 ͑2000͒.
G. P. Morley, I. R. Lambert, D. H. Mordaunt, S. H. S. Wilson, M. N. R.
Ashfold, R. N. Dixon, and C. M. Weston, J. Chem. Soc., Faraday Trans.
U. Manthe, T. Seideman, and W. H. Miller, J. Chem. Phys. 99, 10078
͑1993͒; 101, 4759 ͑1994͒.
1
1
1
7
8
9
F. Matzkies and U. Manthe, J. Chem. Phys. 108, 4828 ͑1998͒.
H.-G. Yu and G. Nyman, J. Chem. Phys. 112, 3935 ͑2000͒.
D. H. Zhang and J. Z. H. Zhang, J. Chem. Phys. 99, 5615 ͑1993͒; D. H.
Zhang, J. Z. H. Zhang, Y. Z. D. Wang, and Q. Zhang, ibid. 102, 7400
4
4
89, 3865 ͑1993͒.
͑
͑
1995͒; J. Dai, W. Zhu, and J. Z. H. Zhang, J. Phys. Chem. 100, 13901
1996͒; W. Zhu, J. Dai, J. Z. H. Zhang, and D. H. Zhang, J. Chem. Phys.
4
4
5
6
M. P. Docker, Chem. Phys. 135, 405 ͑1989͒.
1
05, 4881 ͑1996͒.
LIFBASE: Database and simulation program ͑v. 1.6͒, J. Luque and D. R.
Crosley, SRI International Report No. MP 99-009, 1999.
F. J. Aoiz, M. Brouard, P. A. Enriquez, and R. Sayos, J. Chem. Soc.,
Faraday Trans. 89, 1427 ͑1993͒; F. J. Aoiz, M. Brouard, and P. A. En-
riquez, J. Chem. Phys. 105, 4964 ͑1996͒.
R. N. Dixon, J. Chem. Phys. 85, 1866 ͑1986͒.
M. Brouard, D. W. Hughes, K. S. Kalogerkis, and J. P. Simons, J. Chem.
Phys. 112, 4557 ͑2000͒.
20
D. H. Zhang and J. C. Light, J. Chem. Phys. 104, 4544 ͑1996͒; 105, 1291
1996͒; J. Chem. Soc., Faraday Trans. 93, 691 ͑1997͒.
4
7
͑
2
2
1
2
D. H. Zhang and S.-Y. Lee, J. Chem. Phys. 110, 4435 ͑1999͒.
S. K. Pogrebnya, J. Echave, and D. C. Clary, J. Chem. Phys. 107, 8975
4
4
8
9
͑1997͒; S. K. Posgrebnya, J. Palma, D. C. Clary, and J. Echave, PCCP 2,
6
93 ͑2000͒.
2
2
3
4
M. P. de Miranda, S. K. Pogrebnya, and D. C. Clary, Faraday Discuss.
13, 119 ͑1999͒.
5
0
1
M. Brouard, I. Burak, and S. D. Gatenby, PCCP 2, 715 ͑2000͒.
M. H. Alexander, H.-J. Werner, and D. E. Manolopoulos, J. Chem. Phys.
51
K. Kleinermanns and J. Wolfrum, J. Phys. Chem. 80, 1446 ͑1994͒; J.
Appl. Phys. 34, 5 ͑1984͒; A. Jacobs, H.-R. Volpp, and J. Wolfrum, Chem.
Phys. Lett. 218, 51 ͑1994͒; J. Chem. Phys. 100, 1936 ͑1994͒.
109, 5710 ͑1998͒.
52
53
D. Hausler, P. Andresen, and R. Schinke, J. Chem. Phys. 87, 3949 ͑1987͒.
M. Brouard, S. R. Langford, and D. E. Manolopoulos, J. Chem. Phys. 101,
25
A. Jacobs, H.-R. Volpp, and J. Wolfrum, Chem. Phys. Lett. 196, 249
͑1992͒; S. Koppe, T. Laurent, P. D. Naik, H.-R. Volpp, and J. Wolfrum,
7458 ͑1994͒; M. Brouard and S. R. Langford, ibid. 106, 6354 ͑1997͒.
Can. J. Chem. 72, 615 ͑1994͒; R. A. Brownsword, M. Hillenkamo, T.
Laurent, R. K. Vatsa, H.-R. Volpp, and J. Wolfrum, Chem. Phys. Lett.
54
55
56
57
G. G. Balint-Kurti, J. Chem. Phys. 84, 4443 ͑1986͒.
D. Wang and J. M. Bowman, Chem. Phys. Lett. 207, 227 ͑1993͒.
D. C. Clary, J. Phys. Chem. 99, 13664 ͑1995͒.
2
59, 375 ͑1996͒; R. A. Brownsword, M. Hillenkamo, T. Laurent, H.-R.
Volpp, J. Wolfrum, R. K. Vatsa, and H.-S. Yoo, J. Phys. Chem. 101, 6448
1997͒.
The Franck–Condon model should strictly be modified to accommodate
͑
the different electronic structures of the ground AЈ state of HϩH O͑D O͒
2
2
6
7
2
2
K. Kessler and K. Kleinermanns, Chem. Phys. Lett. 190, 145 ͑1992͒.
K. Honda, M. Takayanagi, T. Nishiya, H. Ohoyama, and I. Hanazaki,
Chem. Phys. Lett. 180, 321 ͑1991͒.
and the first excited AЉ state of H2O͑D2O͒. However, the theoretical ro-
tational populations, like the experimental ones, have been fully averaged
over OH͑OD͒ spin–orbit and -doublet levels, and the main effect of
allowing for the OH͑OD͒ fine structure will be to smear-out the large
oscillations observed in closed shell Franck–Condon calculations ͑Ref.
2
2
3
8
9
0
D. E. Adelman, S. V. Filseth, and R. N. Zare, J. Chem. Phys. 98, 4636
͑
1993͒.
M. J. Bronikowski, W. R. Simpson, and R. N. Zare, J. Phys. Chem. 97,
194 ͑1993͒.
52͒. We do not believe therefore that the calculated distributions reported
2
A. Sinha, M. C. Hsiao, and F. F. Crim, J. Phys. Chem. 95, 8263 ͑1991͒; R.
B. Metz, J. D. Thoemke, J. M. Pfeiffer, and F. F. Crim, J. Chem. Phys. 99,
here will be affected significantly by the aforementioned changes to the
model, although we do note that the unmodified model would ͑necessar-
ily͒ predict the wrong OH͑OD͒ -doublet population preferences.
J. F. Castillo ͑private communication͒.
J. F. Castillo ͑private communication͒. Note that unlike the energy dis-
posal data given in Ref. 12, which were purely classical energy disposals,
those presented in Table I are derived from the QCT calculated OH and
1
744 ͑1993͒.
3
3
1
2
58
G. Hawthorne, P. Sharkey, and I. W. M. Smith, J. Chem. Phys. 108, 4693
1998͒; P. Barnes, P. Sharkey, I. R. Sims, and I. W. M. Smith, Faraday
59
͑
Discuss. 113, 167 ͑1999͒.
C. M. Lovejoy, L. Goldfarb, and S. R. Leone, J. Chem. Phys. 96, 7180
͑1993͒.
H rovibrational quantum state populations.
2
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
31.230.73.202 On: Thu, 18 Dec 2014 02:45:25
1