C O M M U N I C A T I O N S
Table 1. 1PA and 2PA Photophysical Properties of TN and TP Derivatives
λabs (nm) λem (nm)
2PA σa
max
compound
toluene
CH2Cl2
ꢀa (L.mol-1.cm-1
)
toluene
CH2Cl2
Φa,b
σΦ (GM)
σ/MW (GM·g-1 ·mol)
[λmax] (GM) [nm]
TN Series
528
TN-3Py
TN-3Bzt
TN-3Bzo
415
440
434
414
434
431
79400
114900
111100
465
485
478
0.58
0.65
0.63
320[740]
640[740]
810[740]
185
415
510
0.45
0.73
0.98
559
542
TP Series
511
TP-3Py
TP-3Bzt
TP-3Bzo
402
435
431
406
432
424
59500
97300
89000
462
479
469
0.51
0.50
0.52
130[720]
510[740]
540[720]
65
255
280
0.23
0.70
0.80
534
518
a Measurements were performed in CH2Cl2 b Fluorescence emission quantum yield, measured using quinine bisulphate in 1 N H2SO4 as a reference.
quantum yields are also enhanced by 20%, likely due to higher
π-delocalization and additional rigidity. All the derivatives show a
large bathochromism shift in their fluorescence emission along with
the increase of the solvent polarity but no red shift of the absorption
band. This solvatochromism behavior is characteristic of an internal
charge transfer upon excitation12 between the triarylamine core and
peripheral acceptor groups. Moreover, this solvatochromism is more
pronounced in the TN series than in the TP series, reflecting an
increase of ICT (Table S1).
2PA spectra of the dyes were obtained after two-photon-induced
fluorescence (TPIF) measurements, using a femtosecond Ti:sapphire
laser source. The TPIF intensities of the samples were measured
and compared with a reference solution of fluorescein, the ratio of
the fluorescent signals enabling determination of the 2PA cross-
section (Figure 1).13
derivatives. Given the straightforward synthesis of the derivatizable
trisformyl TN key intermediate 2 proposed herein, this work opens
broad perspectives for new molecular design of fluorescent 2PA-
organic materials based on the trinaphthylamine core.
Acknowledgment. This research was supported by MENRT
(Ministe`re Education Nationale, Recherche et Technologie, Ph.D.
fellowship to G.B.), C’nano IdF (Nanosciences Ile de France, Ph.D.
fellowship to G.M.) and EU-FP6-NMP4-2003-505-669 (post doc-
toral fellowship to R.L.)
Supporting Information Available: Complete ref 6a,b. Experi-
mental details and characterization data for all new compounds. This
References
Importantly, the three TN show high 2PA cross-sections that
were strongly enhanced (up to 810 GM) as compared to that of the
TP counterparts. Additionally, as a consequence of both enhance-
ment of 2PA cross section and quantum yield, the TN derivatives
exhibit a two to 3-fold increase of the action cross-section defined
by the product of the 2PA cross-section and emission quantum yield
(σΦ). This enhancement effect is modulated by the strength of the
acceptor since it is particularly emphasized in the case of the weaker
acceptor Py (σΦ increasing from 65 to 185), whereas slightly
attenuated for the Bzt and Bzo series (from 255-280 GM to
415-510 GM, respectively). This result is however difficult to
rationalize given the dispersion inherent to measurements of 2PA
cross sections.14 Nonetheless the ranking order of the σΦ values
observed in the TN series is still reflecting the strength of the
terminal acceptor (Py < Bzt ∼ Bzo). Altogether, these results fully
validate our hypothesis that increasing the donor character of the
triarylamine core leads to a stronger ICT.
Another way to increase 2PA cross section is to extend the
π-bridge linking donor and acceptor groups, but this inevitably
results in large-sized systems that may limit applications such as
bioimaging. Interestingly, the high 2PA performances of the TN
compounds are accompanied by only a slight increase in molecular
weight (4 carbons/branch). To compare the 2PA performances of
different series, the two-photon absorption/molecular weight ratio
(σ/MW) is shown to be a relevant figure of merit.7d In this regard,
our compounds fall in the range of the best large-sized 2PA
chromophores reported to date15 with a σ/MW ratio up to 0.98
GM·g-1 ·mol for TN-3Bzo (Table 1).
(1) (a) Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73–76. (b)
Xu, C.; Zipfel, W.; Shear, J. B.; Williams, R. M.; Webb, W. W. Proc.
Natl. Acad. Sci. U.S.A. 1996, 93, 10763–10768.
(2) (a) Parthenopoulos, D. A.; Rentzepis, P. M. Science 1989, 245, 843–845.
(3) Ehrlich, J. E.; Wu, X. L.; Lee, I.-Y. S.; Hu, Z.-Y.; Ro¨ckel, H.; Marder,
S. R.; Perry, J. W. Opt. Lett. 1997, 22, 1843–1845.
(4) Bhawalkar, J. D.; Kumar, N. D.; Zhao, C. F.; Prasad, P. N. J. Clin. Laser
Med. Surg. 1997, 15, 201–204.
(5) (a) Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt,
J. C.; Kannan, R.; Yuan, L.; He, G. S.; Prasad, P. N. Chem. Mater. 1998,
10, 1863–1874. (b) Abbotto, A.; Beverina, L.; Bozio, R.; Bradamante, S.;
Ferrante, C.; Pagani, G. A.; Signorini, R. AdV. Mater. 2000, 12, 1963–
1967.
(6) (a) Albota, M.; et al. Science 1998, 281, 1653–1656. (b) Zheng, S.; et al.
Chem. Mater. 2007, 19, 432–442.
(7) (a) Porres, L.; Mongin, O.; Katan, C.; Charlot, M.; Pons, T.; Mertz, J.;
Blanchard-Desce, M. Org. Lett. 2004, 6, 47–50. (b) Lee, W.-H.; Lee, H.;
Kim, J.-A.; Choi, J.-H.; Cho, M.; Jeon, S.-J.; Cho, B. R. J. Am. Chem.
Soc. 2001, 123, 10658. (c) He, G. S.; Swiatkiewicz, J.; Jiang, Y.; Prasad,
P. N.; Reinhardt, B. A.; Tan, L. S.; Kannan, R. J. Phys. Chem. A 2000,
104, 4805–4810. (d) Katan, C.; Terenziani, F.; Mongin, O.; Werts, M. H. V.;
Porres, L.; Pons, T.; Mertz, J.; Tretiak, S.; Blanchard-Desce, M. J. Phys.
Chem A 2005, 109, 3024–3037.
(8) Drobizhev, M.; Karotki, A.; Dzenis, Y.; Rebane, A.; Suo, Z.; Spangler,
C. W. J. Phys. Chem. B 2003, 107, 7540–7543.
(9) Alameddine, B.; Savary, S.; Aebisher, O.; Jenny, T. A. Synthesis 2007, 2,
271–276, and patents cited herein.
(10) Hagiya, K.; Mitsui, S.; Taguchi, H. Synthesis 2003, 823–828.
(11) (a) Allain, C.; Schmidt, F.; Lartia, R.; Bordeau, G.; Fiorini-Debuisschert,
C.; Charra, F.; Tauc, P.; Teulade-Fichou, M.-P. ChemBioChem 2007, 8,
424–433. (b) Lartia, R.; Allain, C.; Bordeau, G.; Schmidt, F.; Fiorini-
Debuisschert, C.; Charra, F.; Tauc, P.; Teulade-Fichou, M.-P. J. Org. Chem.
2008, 73, 1732–1744. (c) Nielsen, C. B.; Johnsen, M.; Arnbjerg, J.;
Pittelkow, M.; McIlroy, S. P.; Ogilby, P. R.; Jorgensen, M. J. Org. Chem.
2005, 70, 7065–7079.
(12) Diwu, Z.; Zhang, C.; Klaubert, R. P.; Haughland, J. J. Photochem.
Photobiol., A 2000, 131, 95–100.
(13) Xu, C.; Webb, W. W. J. Opt. Soc. Am. B 1996, 13, 481–491.
(14) Jha, P. C.; Wang, Y.; Agren, H. Chemphyschem 2008, 9, 111–116.
(15) (a) Yang, W. J.; Kim, D. Y.; Kim, C. H.; Jeong, M.-Y.; Lee, S. K.; Jeon,
S.-J.; Cho, B. R. Org. Lett. 2004, 6, 1389–1392. (b) Bhaskar, A.;
Ramakrishna, G.; Lu, Z.; Twieg, R.; Hales, J. M.; Hagan, D. J.;
VanStryland, E.; Goodson, T. J. Am. Chem. Soc. 2006, 128, 11840–11849.
In conclusion, we described an original new family of trinaph-
thylamine derivatives which are very efficient fluorophores for 2PA
absorption. Their high 2PA cross-sections represent an interesting
improvement as compared to the widely explored triphenylamine
JA8055112
9
J. AM. CHEM. SOC. VOL. 130, NO. 50, 2008 16837