Organic Letters
Letter
Jiao, N. J. Am. Chem. Soc. 2012, 134, 18924. (k) Tran, L. D.; Roane, J.;
Daugulis, O. Angew. Chem., Int. Ed. 2013, 52, 6043. (l) Truong, T.;
Klimovica, K.; Daugulis, O. J. Am. Chem. Soc. 2013, 135, 9342.
(m) Roane, J.; Daugulis, O. Org. Lett. 2013, 15, 5842. (n) Urones, B.;
15H05485 (Grant-in-Aid for Young Scientists (A)) to K.H. and
24225002 (Grant-in-Aid for Scientific Research (S)) to M.M.
REFERENCES
■
́
́
Martínez, A. M.; Rodríguez, N.; Arrayas, R. G.; Carretero, J. C. Chem.
(1) Recent reviews: (a) Chakrabarty, S.; Choudhary, S.; Doshi, A.; Liu,
F.-Q.; Mohan, R.; Ravindra, M. P.; Shah, D.; Yang, X.; Fleming, F. F.
Adv. Synth. Catal. 2014, 356, 2135. (b) Boyarskiy, V. P.; Bokach, N. A.;
Luzyanin, K. V.; Kukushkin, V. Y. Chem. Rev. 2015, 115, 2698.
(c) Kruithof, A.; Ruijter, E.; Orru, R. V. A. Chem. - Asian J. 2015, 10, 508.
(2) Selected reviews and accounts: (a) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. Rev. 2007, 107, 174. (b) Satoh, T.; Miura, M. Chem.
Lett. 2007, 36, 200. (c) Campeau, L. C.; Stuart, D. R.; Fagnou, K.
Aldrichim. Acta 2007, 40, 35. (d) Seregin, I. V.; Gevorgyan, V. Chem. Soc.
Rev. 2007, 36, 1173. (e) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res.
2008, 41, 222. (f) Lewis, L. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem.
Res. 2008, 41, 1013. (g) Kakiuchi, F.; Kochi, T. Synthesis 2008, 2008,
3013. (h) Kulkarni, A. A.; Daugulis, O. Synthesis 2009, 4087.
(i) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42,
1074. (j) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem.,
Int. Ed. 2009, 48, 5094. (k) Ackermann, L.; Vicente, R.; Kapdi, A. R.
Angew. Chem., Int. Ed. 2009, 48, 9792. (l) Sun, C.-L.; Li, B.-J.; Shi, Z.-J.
Chem. Commun. 2010, 46, 677. (m) Lyons, T. W.; Sanford, M. S. Chem.
Rev. 2010, 110, 1147. (n) Dudnik, A. S.; Gevorgyan, V. Angew. Chem.,
Int. Ed. 2010, 49, 2096. (o) Satoh, T.; Miura, M. Chem. - Eur. J. 2010, 16,
11212. (p) Ackermann, L. Chem. Commun. 2010, 46, 4866. (q) Liu, C.;
Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780. (r) Yamaguchi,
J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
(s) Hirano, K.; Miura, M. Chem. Lett. 2015, 44, 868.
́
́
Commun. 2013, 49, 11044. (o) Martínez, A. M.; Rodríguez, N.; Arrayas,
R. G.; Carretero, J. C. Chem. Commun. 2014, 50, 2801. (p) Shang, M.;
Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 3354. (q) Li,
Q.; Zhang, S.-Y.; He, G.; Ai, Z.; Nack, W. A.; Chen, G. Org. Lett. 2014,
16, 1764. (r) Wang, Z.; Ni, J.; Kuninobu, Y.; Kanai, M. Angew. Chem., Int.
Ed. 2014, 53, 3496. (s) Wu, X.; Zhao, Y.; Zhang, G.; Ge, H. Angew.
Chem., Int. Ed. 2014, 53, 3706.
(9) For pioneering work by Daugulis, see: (a) Zaitsev, V. Z.;
Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154. Recent
reviews: (b) Corbet, M.; De Campo, F. Angew. Chem., Int. Ed. 2013, 52,
9896. (c) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52,
11726. (d) Castro, L. C. M.; Chatani, N. Chem. Lett. 2015, 44, 410.
(10) The addition of i-Pr2S and Me2S gave 3aa in 75% and 70% GC
yields, respectively, under otherwise identical conditions of entry 9 in
Table 1. The Me2S-free CuBr also worked well in the presence of Ph2S
(86% GC yield of 3aa under otherwise identical conditions of entry 9).
However, it is relatively unstable under atmosphere and somewhat
difficult to handle. Thus, we identified the more user-friendly CuBr·
SMe2 to be optimal.
(11) Crystallographic data for the structures of 3aa and 3ab have been
deposited with the Cambridge Crystallographic Data Center. See the
other than 3aa and 3ab was assigned by analogy.
(12) The minor regioisomer 3ia′ undergoes the rapid E/Z
interconversion of the imine moiety at room temperature, which was
detected by 1H NMR in a CDCl3 solution. See the Supporting
(3) (a) Wang, Y.; Wang, H.; Peng, J.; Zhu, Q. Org. Lett. 2011, 13, 4604.
(b) Wang, Y.; Zhu, Q. Adv. Synth. Catal. 2012, 354, 1902. (c) Nanjo, T.;
Tsukano, C.; Takemoto, Y. Org. Lett. 2012, 14, 4270. (d) Jiang, H.; Gao,
H.; Liu, B.; Wu, W. RSC Adv. 2014, 4, 17222. (e) Wang, D.; Cai, S.; Ben,
R.; Zhou, Y.; Li, X.; Zhao, J.; Wei, W.; Qian, Y. Synthesis 2014, 46, 2045.
(f) Liu, Y.-J.; Xu, H.; Kong, W.-J.; Dai, H.-X.; Yu, J.-Q. Nature 2014, 515,
389. (g) Zheng, Q.; Luo, P.; Lin, Y.; Chen, W.; Liu, X.; Zhang, Y.; Ding,
Q. Org. Biomol. Chem. 2015, 13, 4657.
(13) We tested less hindered isonitriles, including 2-naphthyl and 4-
methoxyphenyl ones. However, the products were formed in <30%
yield. Although the exact reason is not clear, such isonitriles
competitively decomposed under the standard conditions, which was
judged by GC and GCMS analysis.
(4) Zhu, C.; Xie, W.; Falck, J. R. Chem. - Eur. J. 2011, 17, 12591.
(5) For related transformation with carbon monoxide under palladium,
ruthenium, and cobalt catalysis, see: (a) Inoue, S.; Shiota, H.; Fukumoto,
Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 6898. (b) Yoo, E. J.; Wasa,
M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 17378. (c) Hasegawa, N.;
Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2011,
133, 8070. (d) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4688.
(e) Wang, C.; Zhang, L.; Chen, C.; Han, J.; Yao, Y.; Zhao, Y. Chem. Sci.
2015, 6, 4610.
(6) For biological activity of 3-iminoisoindolinones, see: Murthy, A. R.
K.; Wong, O. T.; Reynolds, D. J.; Hall, I. H. Pharm. Res. 1987, 4, 21.
(7) (a) Kitahara, M.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. J.
Am. Chem. Soc. 2011, 133, 2160. (b) Nishino, M.; Hirano, K.; Satoh, T.;
Miura, M. Angew. Chem., Int. Ed. 2012, 51, 6993. (c) Hirano, K.; Miura,
M. Chem. Commun. 2012, 48, 10704. (d) Nishino, M.; Hirano, K.; Satoh,
T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 4457. (e) Odani, R.;
Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2013, 78, 11045.
(f) Miura, M.; Nishino, M.; Hirano, K.; Satoh, T.; Odani, R. Heterocycles
2014, 88, 595. (g) Takamatsu, K.; Hirano, K.; Satoh, T.; Miura, M. Org.
Lett. 2014, 16, 2892. (h) Odani, R.; Hirano, K.; Satoh, T.; Miura, M.
Angew. Chem., Int. Ed. 2014, 53, 10784. (i) Odani, R.; Hirano, K.; Satoh,
T.; Miura, M. J. Org. Chem. 2015, 80, 2384. (j) Takamatsu, K.; Hirano,
K.; Satoh, T.; Miura, M. J. Org. Chem. 2015, 80, 3242.
(8) Selected examples: (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-
Q. J. Am. Chem. Soc. 2006, 128, 6790. (b) Uemura, T.; Imoto, S.;
Chatani, N. Chem. Lett. 2006, 35, 842. (c) Brasche, G.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2008, 47, 1932. (d) Ueda, S.; Nagasawa, H. Angew.
Chem., Int. Ed. 2008, 47, 6411. (e) Mizuhara, T.; Inuki, S.; Oishi, S.; Fujii,
M.; Ohno, H. Chem. Commun. 2009, 3413. (f) Shuai, Q.; Deng, G.;
Chua, Z.; Bohle, D. S.; Li, C.-J. Adv. Synth. Catal. 2010, 352, 632.
(g) Chu, L.; Yue, X.; Qing, F.-L. Org. Lett. 2010, 12, 1644. (h) Wang, W.;
Luo, F.; Zhang, S.; Cheng, J. J. Org. Chem. 2010, 75, 2415. (i) Tran, L. D.;
Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237. (j) Tang, C.;
(14) We have no explanation at present.
(15) The 1H NMR chemical shifts of NH in 1a, A, B, and C are 10.76,
8.21, 7.61, and 9.26 ppm, respectively (in CDCl3, 25 °C).
(16) We cannot exclude the possibility of the insertion into the N−Cu
in 6. See: (a) Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.;
Kambe, N. J. Am. Chem. Soc. 2008, 130, 10504. (b) Shiro, D.; Fujiwara,
S.; Tsuda, S.; Iwasaki, T.; Kuniyasu, H.; Kambe, N. Chem. Lett. 2015, 44,
465. However, simple N−H adducts across the isonitrile moiety were
not observed under any Cu-promoted conditions as far as we tested.
(17) (a) Huffman, L. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 9196.
(b) King, A. E.; Brunold, T. C.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131,
5044. (c) King, A. E.; Huffman, L. M.; Casitas, A.; Costas, M.; Ribas, X.;
Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 12068. (d) Casitas, A.; Canta, M.;
́
Sola, M.; Costas, M.; Ribas, X. J. Am. Chem. Soc. 2011, 133, 19386.
(18) For positive effects of sulfides in Pd- and Cu-promoted C−H
functionalization, see: (a) Ohmura, T.; Kijima, A.; Suginome, M. J. Am.
Chem. Soc. 2009, 131, 6070. (b) Li, H.; Liu, J.; Sun, C.-L.; Li, B.-J.; Shi,
Z.-J. Org. Lett. 2011, 13, 276. (c) Zhang, G.; Zhao, Y.; Ge, H. Angew.
Chem., Int. Ed. 2013, 52, 2559.
(19) We observed no negative effects upon treatment with radical
inhibitors, including TEMPO and galvinoxyl.
(20) (a) Prime, M. E.; Courtney, S. M.; Brookfield, F. A.; Marston, R.
W.; Walker, V.; Warne, J.; Boyd, A. E.; Kairies, N. A.; von der Saal, W.;
Limberg, A.; Georges, G.; Engh, R. A.; Goller, B.; Rueger, P.; Rueth, M. J.
Med. Chem. 2011, 54, 312. (b) Elagawany, M.; Ibrahim, M. A.; Ahmed,
H. E. A.; El-Etrawy, A. S.; Ghiaty, A.; Abdel-Samii, Z. K.; El-Feky, S. A.;
Bajorath, J. Bioorg. Med. Chem. Lett. 2013, 23, 2007.
(21) The present conditions did not promote the direct carbonyl
insertion under CO pressure.
D
Org. Lett. XXXX, XXX, XXX−XXX