RSC Advances
Communication
resembles with intermediate 6 in the catalytic cycle (Scheme 2).
Although the N–H bond of the catalyst already activates the
imine, the methanol solvent molecule may provide additional
activation through hydrogen bonding (Scheme 2). This obser-
vation is also supported by computational study of transfer
hydrogenation in methanol in which it has been shown that
methanol as a solvent could lower the thermodynamic free
energy of hydrogen transfer and even alter the mechanism.10
2013, 24, 233–239; (h) J. Vaclavik, P. Sot, B. Vilhanova,
J. Pechacek, M. Kuzma and P. Kacer, Molecules, 2013, 18,
6804–6828.
5 (a) J. S. Wu, F. Wang, Y. P. Ma, X. C. Cui, L. F. Cun, J. Zhu,
J. G. Deng and B. L. Yu, Chem. Commun., 2006, 1766–1768;
(b) L. Li, J. S. Wu, F. Wang, J. Liao, H. Zhang, C. X. Lian,
J. Zhu and J. G. Deng, Green Chem., 2007, 9, 23–25; (c)
J. Canivet and G. Suss-Fink, Green Chem., 2007, 9, 391–397;
(d) L. Evanno, J. Ormala and P. M. Pihko, Chem.–Eur. J.,
2009, 15, 12963–12967; (e) N. Haraguchi, K. Tsuru,
Y. Arakawa and S. Itsuno, Org. Biomol. Chem., 2009, 7, 69–
75; (f) Y. F. Tang, X. F. Li, C. X. Lian, J. Zhu and J. G. Deng,
Tetrahedron:Asymmetry, 2011, 22, 1530–1535; (g) L. Wang,
Q. Zhou, C. H. Qu, Q. W. Wang, L. F. Cun, J. Zhu and
J. G. Deng, Tetrahedron, 2013, 69, 6500–6506; (h) H. Sugie,
Y. Hashimoto, N. Haraguchi and S. Itsuno, J. Organomet.
Chem., 2014, 751, 711–716.
Conclusions
In summary, we have developed a simple protocol for ATH of
imines in homogeneous H2O–MeOH solvent media with Rh–
TsDPEN catalyst system and HCOONa as a hydrogen donor
which affords rapid access to highly enantioselective chiral
amines. Excellent enantioselectivities and good conversions
were achieved for various imine derivatives. The DFT calcula-
tions provide insights into the nature of the ATH mechanism
and showcase the signicance of the role of hydrogen bonding
through solvent molecule in improving the activity of the
process. This simple and more efficient aqueous-methanolic co-
solvent media with Rh–TsDPEN catalyst system provides a
valuable alternative to modied water soluble ligands and it
also offers several advantages, including mild reaction condi-
tions, operational simplicity.
6 K. Mashima, T. Abe and K. Tani, Chem. Lett., 1998, 1199–
1200.
7 X. F. Wu, X. H. Li, A. Zanotti-Gerosa, A. Pettman, J. K. Liu,
A. J. Mills and J. L. Xiao, Chem.–Eur. J., 2008, 14, 2209–2222.
´
´
8 N. Fleury-Bregeot, V. de la Fuente, S. Castillon and C. Claver,
ChemCatChem, 2010, 2, 1346–1371.
9 S. H. Yalkowsky, Solubility and Solubilization in Aqueous
Media, American Chemical Society, 1999.
10 J. W. Handgraaf and E. J. Meijer, J. Am. Chem. Soc., 2007, 129,
3099–3103.
11 A. Pavlova and E. J. Meijer, ChemPhysChem, 2012, 13, 3492–
3496.
12 X. Wu, J. Liu, D. Di Tommaso, J. A. Iggo, C. R. A. Catlow,
J. Bacsa and J. Xiao, Chem.–Eur. J., 2008, 14, 7699–7715.
13 Y. S. Jung and R. A. Marcus, J. Am. Chem. Soc., 2007, 129,
5492–5502.
14 P. A. Dub and T. Ikariya, J. Am. Chem. Soc., 2013, 135, 2604–
2619.
15 (a) A. H. Ell, J. B. Johnson and J. E. Backvall, Chem. Commun.,
2003, 1652–1653; (b) C. P. Casey, G. A. Bikzhanova, Q. Cui
and I. A. Guzei, J. Am. Chem. Soc., 2005, 127, 14062–14071;
(c) J. S. M. Samec, A. H. Ell, J. B. Aberg, T. Privalov,
L. Eriksson and J. E. Backvall, J. Am. Chem. Soc., 2006, 128,
14293–14305; (d) T. Privalov, J. S. M. Samec and
J. E. Backvall, Organometallics, 2007, 26, 2840–2848.
16 A. J. Blacker, E. Clot, S. B. Duckett, O. Eisenstein, J. Grace,
A. Nova, R. N. Perutz, D. J. Taylor and A. C. Whitwood,
Chem. Commun., 2009, 6801–6803.
17 A. Nova, D. J. Taylor, A. J. Blacker, S. B. Duckett, R. N. Perutz
and O. Eisenstein, Organometallics, 2014, 33, 3433–3442.
18 D. G. Blackmond, M. Ropic and M. Stenovic, Org. Process
Res. Dev., 2006, 10, 457–463.
19 J. E. D. Martins, G. J. Clarkson and M. Wills, Org. Lett., 2009,
11, 847–850.
Notes and references
1 (a) S. Kobayashi and H. Ishitani, Chem. Rev., 1999, 99, 1069–
1094; (b) C. J. Cobley and J. P. Henschke, Adv. Synth. Catal.,
2003, 345, 195–201.
2 (a) N. Uematsu, A. Fujii, S. Hashiguchi, T. Ikariya and
R. Noyori, J. Am. Chem. Soc., 1996, 118, 4916–4917; (b)
J. M. Mao and D. C. Baker, Org. Lett., 1999, 1, 841–843; (c)
G. D. Williams, R. A. Pike, C. E. Wade and M. Wills, Org.
Lett., 2003, 5, 4227–4230; (d) A. Ros, A. Magriz, H. Dietrich,
M. Ford, R. Fernandez and J. M. Lassaletta, Adv. Synth.
Catal., 2005, 347, 1917–1920.
3 S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya and R. Noyori,
J. Am. Chem. Soc., 1995, 117, 7562–7563.
4 (a) Y. Amrani, L. Lecomte, D. Sinou, J. Bakos, I. Toth and
B. Heil, Organometallics, 1989, 8, 542–547; (b) J. Bakos,
A. Orosz, B. Heil, M. Laghmari, P. Lhoste and D. Sinou, J.
Chem. Soc., Chem. Commun., 1991, 23, 1684–1685; (c)
C. Lensink and J. G. Devries, Tetrahedron: Asymmetry, 1992,
3, 235–238; (d) C. Lensink, E. Rijnberg and J. G. deVries, J.
Mol. Catal. A: Chem., 1997, 116, 199–207; (e) P. Roszkowski
and Z. Czarnocki, Mini-Rev. Org. Chem., 2007, 4, 190–200;
(f) J. Vaclavik, M. Kuzma, J. Prech and P. Kacer,
Organometallics, 2011, 30, 4822–4829; (g) J. Pechacek,
J. Vaclavik, J. Prech, P. Sot, J. Januscak, B. Vilhanova,
J. Vavrik, M. Kuzma and P. Kacer, Tetrahedron: Asymmetry,
46356 | RSC Adv., 2014, 4, 46351–46356
This journal is © The Royal Society of Chemistry 2014