Paul Ha-Yeon Cheong et al.
COMMUNICATIONS
distortion to reach the syn, pyramidalized iminium tran- Acknowledgements
sition states, than the planar anti. Despite this conforma-
We are grateful to the National Institute of General Medical Sci-
ences, National Institutes of Health for financial support of this
research. We thank the National Computational Science Alli-
ance, the National Science Foundation, and UCLA Academic
Technology Services for computer resources. The Montreal
group acknowledges financial support from the Natural Science
and Engineering Council of Canada, and X-ray crystallograph-
tional bias, trans-methanoproline is still anti-selective
not only due to the stability gained by the more planar
iminium ofthe anti transition structure, but because of
the accentuated NCHdþ –Od– interactions ofthe cyclo-
propyl protons.
The observed catalytic ability ofthe two derivatives
can also be explained by the conformational biases. Giv-
en the enamine-mediated mechanism ofthe Hajos–Par-
rish–Eder–Sauer–Wiechert reaction,[16] it stands to rea-
son that the activation barrier to distort the enamines
from their lowest energy conformations to reflect the
partial iminium (ideal cN ¼08) ofthe transition states
is higher for the non-planar trans-methanoproline
(cN ¼468) and lower for the planar cis-methanoproline
(cN ¼ ꢀ108). The energy required for the trans stereo-
isomer toachieve the necessary planar iminium arrange-
ment in the aldol transition state is responsible for its
poorer catalytic ability. It is ofinterest to note that de-
spite this planar conformational preference of cis-meth-
anoproline, it is still slightly slower than the parent pro-
line catalyst by a factor of ꢁ3. We attribute the most
probable cause to the retardation ofthe hydrolysis of
the product iminium by the above unusual conforma-
tional biases.
´
´
ic analyses by Michel Simard and Francine Belanger-Gariepy.
References and Notes
[1] a) Z. G. Hajos, D. R. Parrish, German Patent DE
2,102,623, 1971; b) Z. G. Hajos, D. R. Parrish, J. Org.
Chem. 1974, 39, 1615; c) U. Eder, G. Sauer, R. Wiechert,
German Patent DE 2,014,757, 1971; d) U. Eder, G. Sauer,
R. Wiechert, Angew. Chem. Int. Ed. 1971, 10, 496.
[2] a) B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem.
Soc. 2000, 122, 2395; b) K. Sakthivel, W. Notz, T. Bui,
C. F. Barbas III, J. Am. Chem. Soc. 2001, 123, 5260;
c) B. List, Synlett 2001, 1675; d) A. B. Northrup,
D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 6798.
[3] a) B. List, J. Am. Chem. Soc. 2000, 122, 9336; b) B. List, P.
Pojarliev, W. T. Biller, H. J. Martin, J. Am. Chem. Soc.
2002, 124, 827; c) Y. Hayashi, W. Tsuboi, I. Ashimine,
T. Urushima, M. Shoji, K. Sakai, Angew. Chem. Int.
Ed. 2003, 42, 3677; d) W. Notz, F. Tanaka, S. Watanabe,
N. S. Chowdari, J. M. Turner, R. Thayumanavan, C. F.
Barbas III, J. Org. Chem. 2003, 68, 9624.
[4] a) A. P. Kozikowski, B. B. Mugrage, J. Org. Chem. 1989,
54, 2275; b) M. Yamaguchi, N. Yokota, T. Minami, J.
Chem. Soc. Chem. Commun. 1991, 1088; c) M. Yamagu-
chi, T. Shiraishi, M. Hirama, Angew. Chem. Int. Ed. Engl.
1993, 32, 1176; d) M. Yamaguchi, T. Shiraishi, Y. Igarashi,
M. Hirama, Tetrahedron Lett. 1994, 35, 8233; e) M. Ya-
maguchi, T. Shiraishi, M. Hirama, J. Org. Chem. 1996,
61, 3520; f) M. Yamaguchi, Y. Igarashi, R. S. Reddy, T.
Shiraishi, M. Hirama, Tetrahedron 1997, 53, 11223:
g) L. De Ferra, P. Massardo, EP 1,074,550 A1, 2000;
h) T. Bui, C. F. Barbas III, Tetrahedron Lett. 2000, 41,
6951; i) S. Hanessian, V. Pham, Org. Lett. 2000, 2, 2975;
j) B. List, P. Pojarliev, H. Martin, J. Org. Lett. 2001, 3,
2423; k) B. List, C. Castello, Synlett 2001, 1687; l) J. M.
Betancort, C. F. Barbas III, Org. Lett. 2001, 3, 3737.
[5] a) S. P. Brown, M. P. Brochu, C. J. Sinz, D. W. C. MacMil-
lan, J. Am. Chem. Soc. 2003, 125, 10808; b) G. Zhong,
Angew. Chem. Int. Ed. 2003, 42, 4247; c) Y. Hayashi, J.
Yamaguchi, K. Hibino, M. Shoji, Tetrahedron Lett.
2003, 44, 8293. e) Y. Hayashi, J. Yamaguchi, T. Sumiya,
M. Shoji, Angew. Chem. Int. Ed., 2004, 43, 1112; f) G.
Zhong, Y. Yu, Org. Lett. 2003, 10, 1637; g) P. H.-Y.
Cheong, K. N. Houk, manuscript in preparation.
We have demonstrated the use ofunique conforma-
tional preferences imparted by the fused cyclopropanes
to identify a new catalytic proline derivative for the Ha-
jos–Parrish–Eder–Sauer–Wiechert reaction. Analo-
gous studies ofmethanoproline-catalyzed intermolecu-
lar aldol reactions are in progress.
Experimental Section
Typical Procedure
4 mg each of (S)-proline, cis-4,5-methanoproline, and trans-
4,5-methanoproline, were mixed respectively with 0.5 mL of
DMF and stirred at 15–168C for 15 min. A solution of trike-
tone (0.182 gm) in 1 mL ofDMF was added and stirred of r
140 h at 15–168C in a reaction tube, immersed in a water
bath and protected from light. DMF was removed under re-
duced pressure and the residual dark oil was chromatographed
using 1:1 EtOAc:hexanes. The product was dehydrated using
1 N H2SO4 inDMFat958C for 5–6 h. The solvent was removed
under reduced pressure, dissolved in EtOAc, washed with satu-
rated sodium bicarbonate and dried over sodium sulfate. The
solution was passed through a silica gel bed, and the solvent
was removed under reduced pressure. The enantiomeric excess
was determined using chiral phase HPLC [Chiralpak AS-RH.
72% H2O (0.1% TFA)/28% CH3CN; tr (S)¼9 min and tr (R)¼
14 min].
[6] S. Bahmanyar, K. N. Houk J. Am. Chem. Soc. 2001, 123,
12911.
[7] S. Bahmanyar, K. N. Houk, Org. Lett. 2003, 5, 1249.
[8] C. E. Cannizzaro, K. N. Houk, J. Am. Chem. Soc. 2002,
124, 7163.
1114
ꢀ 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
asc.wiley-vch.de
Adv. Synth. Catal. 2004, 346, 1111–1115