APPLICATION OF GO/COF AS A NOVEL, EFFICIENT AND RECOVERABLE CATALYST
7 of 9
In order to prove the heterogeneity of the catalyst, the
filtration experiment of GO/COF was performed. The cat-
alyst was separated from the reaction mixture after
5 min, and the resulting filtrate was further stirred for
5 min. The conversion yield of the benzaldehyde remains
unchanged for the filtrate even at extended time, indicat-
ing that the catalytic process is heterogeneous and there
is not any progress for the reaction in the homogeneous
phase.
ORCID
REFERENCES
[1] S. Dang, H. Yang, P. Gao, H. Wang, X. Li, W. Wei, Y. Sun,
Catal. Today 2019, 330, 61.
[2] Y. Wen, J. Zhang, Q. Xu, X. T. Wu, Q. L. Zhu, Coord. Chem.
Rev. 2018, 376, 248.
[3] M. Samaniyan, M. Mirzaei, R. Khajavian, H. Eshtiagh-
Hosseini, C. Streb, ACS Catal. 2019, 9, 10174.
[4] H. Karimi-Maleh, C. T. Fakude, N. Mabuba, G. M. Peleyeju,
O. A. Arotiba, J. Colloid Interface Sci. 2019, 554, 603.
[5] M. Miraki, H. Karimi-Maleh, M. A. Taher, S. Cheraghi,
F. Karimi, S. Agarwal, V. K. Gupta, J. Mol. Liq. 2019, 278, 672.
[6] Z. Xu, Y. Liu, L. Dong, A. B. Closson, N. Hao, M. Oglesby,
G. P. Escobar, S. Fu, X. Han, C. Wen, J. Liu, M. D. Feldman,
Z. Chen, J. X. J. Zhang, ACS Appl. Mater. Interfaces 2018, 10,
33516.
[7] H. Karimi-Maleh, M. Shafieizadeh, M. A. Taher, F. Opoku,
E. M. Kiarii, P. P. Govender, S. Ranjbari, M. Rezapour,
Y. Orooji, J. Mol. Liq. 2020, 298, 112040.
[8] S. Hassanajili, A. Karami-Pour, A. Oryan, T. Talaei-Khozani,
Mater. Sci. Eng. C 2019, 104, 109960.
3.4 | Reusability of GO/COF
To examine the reusability of GO/COF, after the comple-
tion of the reaction, the catalyst was collected and sepa-
rated and then reused under similar conditions as the
first run. This experiment was repeated eight times and it
was found that GO/COF is stable under the applied con-
ditions and can be reused at least eight times without a
considerable decreasing in its catalytic activity (Figure 6).
[9] F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-
Maleh, Compos. Part B Eng. 2019, 172, 666.
[10] A. Khodadadi, E. Faghih-Mirzaei, H. Karimi-Maleh,
A. Abbaspourrad, S. Agarwal, V. K. Gupta, Sens. Actuators B
Chem. 2019, 284, 568.
3.5 | Comparison of the proposed
catalyst with previously reported catalysts
for the Knoevenagel condensation
[11] V. B. Mohan, K. Lau, D. Hui, D. Bhattacharyya, Compos. Part
B: Eng. 2018, 142, 200.
[12] H. Karimi-Maleh, O. A. Arotiba, J. Colloid Interface Sci. 2020,
560, 208.
[13] M. Huskic, S. Bolka, A. Vesel, M. Mozetic, A. Anzlovar,
A. Vizintin, E. Zagar, Eur. Polym. J. 2018, 101, 211.
[14] Y. Chen, P. Potschke, J. Pionteck, B. Voit, H. Qi, ACS Omega
2019, 4, 5117.
The comparison between the performance of the
Knoevenagel condensation based on the GO/COF cata-
lyst and some previously reported catalysts involving the
Knoevenagel condensation is listed in Table 3. It was
found that GO/COF exhibited advantages in terms of
cost-effectiveness and simplicity and low temperature.
[15] S. I. Siddiqui, S. A. Chaudhry, Process Saf. Environ. Protection
2018, 119, 138.
4 | CONCLUSIONS
[16] Y. Liu, C. Gao, Q. Li, H. Pang, Chem. – Eur. J. 2019, 25, 2141.
[17] S. Zheng, H. Xue, H. Pang, Coord. Chem. Rev. 2018, 373, 2.
[18] Z. Kang, Y. Peng, Y. Qian, D. Yuan, M. A. Addicoat, T. Heine,
Z. Hu, L. Tee, Z. Guo, D. Zhao, Chem. Mater. 2016, 28, 1277.
[19] M. S. Lohse, T. Bein, Adv. Funct. Mater. 2018, 28, 1705553.
[20] H. Fan, A. Mundstock, A. Feldhoff, A. Knebel, J. Gu,
H. Meng, J. Caro, J. Am. Chem. Soc. 2018, 140, 10094.
[21] M. X. Wu, Y. W. Yang, Chinese Chem. Lett. 2017, 28, 1135.
[22] X. Liu, D. Huang, C. Lai, G. Zeng, L. Qin, H. Wang, H. Yi,
B. Li, S. Liu, M. Zhang, R. Deng, Y. Fu, L. Li, W. Xue, S. Chen,
Chem. Soc. Rev. 2019, 48, 5266.
In this work, GO/COF catalyst was constructed and char-
acterized by FT-IR, XRD, EDX and SEM techniques. The
SEM images displayed that the COF nanoparticles are
well dispersed on the surfaces of GO. This study exam-
ined the Knoevenagel condensation and synthesis of
benzylidenemalononitrile derivatives in the presence of
GO/COF as a powerful heterogeneous catalyst. The
Knoevenagel products were achieved in high yields under
moderate conditions and short reaction time (10 min).
The other features of the present study include straight-
forward preparation and cost-effective of catalyst,
accomplishing reaction at room temperature, solvent-free
media and low loading of catalyst.
[23] A. K. Mandal, J. Mahmood, J. B. Baek, ChemNanoMat 2017,
3, 373.
[24] X. Hu, Y. Long, M. Fan, M. Yuan, H. Zhao, J. Ma, Z. Dong,
Appl. Catal. B: Environ. 2019, 244, 25.
[25] Y. Li, C. X. Yang, X. P. Yan, Chem. Commun. 2017, 53, 2511.
[26] Q. Wang, H. Wu, F. Lv, Y. Cao, Y. Zhou, N. Gan,
J. Chromatogr. A 2018, 1572, 1.
[27] J. H. Li, Z. W. Yu, Z. Gao, J. Q. Li, Y. T. Yu, X. Xiao, W. Hui,
Y. Ya, L. Fan, C. Jiang, L. J. Sun, F. Luo, Inorg. Chem. 2019,
58, 10829.
ACKNOWLEDGEMENTS
We are grateful to Yasouj University (grant number
Gryu-89131307) for financial assistance.