Paper
Catalysis Science & Technology
η1 geometry) are reduced by the accumulated electrons to the
anionic species through the first electron transfer step, which
is strongly affected by the relative position of Ered. In this
step, the trapped electrons seem to be transferred from the
Ti 3d orbital to the π* orbital on the carbonyl moiety. The
next protonation step should be prior to the back electron
transfer from the anionic species to the deep Tist sites
because the trapped electrons at the deep Tist sites mostly
remain, or even if the trapped electrons are consumed by the
reaction, another electron can be rapidly supplied from the
accumulated CB electrons within 500 ps (Fig. 6).28,29 This
protonation step may be associated with the ethanol oxida-
tion by h+ on the TiO2 surface. Recently, Morris et al. pro-
posed the photo-oxidation mechanism of methanol on rutile
TiO2 nanoparticles by means of FT-IR spectroscopy, in which
the photogenerated holes play a crucial role in the methanol
oxidation and produce H+ and a new surface hydroxyl group,
HObr−, during the reaction.33 In a similar manner, H+ and/or
2 S. Kohtani, E. Yoshioka, K. Saito, A. Kudo and H. Miyabe,
Catal. Commun., 2010, 11, 1049–1053.
3 S. Kohtani, S. Nishioka, E. Yoshioka and H. Miyabe,
Catal. Commun., 2014, 43, 61–65.
4 S. Kohtani, E. Yoshioka, K. Saito, A. Kudo and H. Miyabe,
J. Phys. Chem. C, 2012, 116, 17705–17713.
5 S. Füldner, R. Mild, H. I. Siegmund, J. A. Schroeder,
M. Gruber and B. König, Green Chem., 2010, 12, 400–406.
6 Y. Shiraishi, Y. Togawa, D. Tsukamoto, S. Tanaka and
T. Hirai, ACS Catal., 2012, 2, 2475–2481.
7 U. Diebold, Surf. Sci. Rep., 2003, 48, 53–229, and references therein.
8 T. L. Thompson and J. T. Yates, Chem. Rev., 2006, 106,
4428–4453, and references therein.
9 M. A. Henderson, Surf. Sci. Rep., 2011, 66, 185–297, and
references therein.
10 M. A. Henderson, J. Phys. Chem. B, 2004, 108, 18932–18941.
11 M. A. Henderson, N. A. Deskins, R. T. Zehr and M. Dupuis,
J. Catal., 2011, 279, 205–212.
12 R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni,
E. Kojima, A. Kitamura, M. Shimohigashi and T. Watanabe,
Nature, 1997, 388, 431–432.
−
HObr might be generated during the photo-oxidation of
ethanol on the P25 TiO2 surface and associated with the pro-
tonation reaction. The second electron transfer should be
faster than the first one because the predicted reduction
potential of the acetophenone ketyl radical (−1.59 V vs. SHE
in CH3CN calculated by a quantum chemical calculation)34
is +0.3 V more positive than that of AP 5 (−1.89 V). At the
end of the sequential reaction, the final secondary alcohol
product would be formed via the rearrangement and the sec-
ond protonation.
13 J. Li, Chromatographia, 2004, 60, 63–71.
14 T. Beager, M. Sterrer, O. Diwald, E. Knozinger, D. Panayotov,
T. L. Thompson and J. T. Yates, J. Phys. Chem. B, 2005, 109,
6061–6068.
15 S. H. Szczepankiewicz, A. J. Colussi and M. R. Hoffmann,
J. Phys. Chem. B, 2000, 104, 9842–9850.
16 S. H. Szczepankiewicz, J. A. Moss and M. R. Hoffmann,
J. Phys. Chem. B, 2002, 106, 2922–2927.
17 S. H. Szczepankiewicz, J. A. Moss and M. R. Hoffmann,
J. Phys. Chem. B, 2002, 106, 7654–7658.
Conclusions
We have demonstrated that the photocatalytic hydrogenation
of AP derivatives proceeds via the surface defect Ti (Tist) sites
on the TiO2 surface, where they are not only adsorption
sites but also electron trap sites. Under UV irradiation, the
electron transfer event at the Tist sites initiates the hydroge-
nation of AP derivatives, in which the reaction rate is strongly
affected by the reduction potential (Ered) of the substrates.
A reasonable electron transfer reaction model via the Tist
sites (Fig. 6) is proposed in this study. The results provide
good insight into valuable information about the reaction
mechanism of the photo-hydrogenation of AP derivatives as
well as the physicochemical properties of the Tist sites on
the TiO2 surface.
18 M. Takeuchi, G. Martra, S. Coluccia and M. Anpo, J. Phys.
Chem. C, 2007, 111, 9811–9817.
19 M. Takeuchi, J. Deguchi, S. Sakai and M. Anpo, Appl. Catal., B,
2010, 96, 218–223.
20 S. Ikeda, N. Sugiyama, S. Murakami, H. Kominami, Y. Kera,
H. Noguchi, K. Uosaki, T. Torimoto and B. Ohtani,
Phys. Chem. Chem. Phys., 2003, 5, 778–783.
21 Y. Q. Gao, Y. Georgievskii and R. A. Marcus, J. Chem. Phys.,
2000, 112, 3358–3369.
22 N. S. Lewis, J. Phys. Chem. B, 1998, 102, 4843–4855.
23 T. W. Hamann, F. Gstrein, B. S. Brunschwig and N. S. Lewis,
J. Am. Chem. Soc., 2005, 127, 7815–7824.
24 J. W. Ondersma and T. W. Hamann, J. Am. Chem. Soc., 2011,
133, 8264–8271.
25 The outer-sphere reorganization energy for the AP derivatives
at the TiO2/ethanol interface can be estimated by the
following equation:22–24
Acknowledgements
This work was supported by Grant-in-Aid for Scientific
Research (no. 22590026 and 24590067) from the Japan
Society for the Promotion of Science.
2
2
2
2
2
n
n
(zq)
8
1
1
1
1
1
1
TiO2
s
TiO2
TiO2
s
s
2
2
a
2R
s
n
n
n
n
s
0
s
s
s
TiO2
Notes and references
where Δ z is the change in the charge of the AP derivative, a
is the radius of the AP derivative (ca. 0.35 nm estimated
1 S. Kohtani, E. Yoshioka and H. Miyabe, in Hydrogenation,
ed. Karamé, InTech, Rijeka, 2012, ch.12, pp. 291–308, (This is an
open access chapter, DOI: 10.5772/45732), and references therein.
using the DFT calculation), ns and nTiO are the refractive
2
1090 | Catal. Sci. Technol., 2014, 4, 1084–1091
This journal is © The Royal Society of Chemistry 2014