Please donot adjust the margins
centered.
2500000
4-pmntd
2000000
1500000
1000000
500000
0
1
2
3
4
5
300
350
400
450
500
550
600
650
Wavelength/nm
Fig. 4 Emission spectra of the ligand and complexes 1-5.
In summary, a semirigid ditopic ligand with two relatively flexible pyridyl arms and its Cu(II), Cd(II), Zn(II)
coordination polymers have been synthesized and structurally characterized. When using different metal centers, anions and
solvents, the ligand can take on Z or U-mode conformations to assemble four-connecting metal nodes and stretch either in a
plane or in three dimensions, resulting in 2D bat-like or dumbbell-like (4,4)-sql topological or 3D dia- type building units.
Further non-interpenetrated packing among layers or multi-interpenetration of complementary networks will bring different
shapes and sizes to the inner cavities. Especially, introduction of pillar anions will lead to “secondary building process”
among layers of the coordination polymers, and have great effects to tune the interpenetration and cavity size of the
complexes.
Acknowledgment
This work was supported by NSFC (Nos. 21771197, 21720102007, 21821003), Local Innovative and Research Teams Project of
Guangdong Pearl River Talents Program (No. 2017BT01C161), and FRF for the Central Universities.
References
[1] (a) W.P. Lustig, S. Mukherjee, N.D. Rudd, et al., Chem. Soc. Rev. 46 (2017) 3242-3285;
(b) Y. Zhang, S. Yuan, G. Day, et al., Coord. Chem. Rev. 354 (2018) 28-45;
(c) M. Pan, K. Wu, J.H. Zhang, C.Y. Su, Coord. Chem. Rev. 378 (2017) 333-349;
(d) M. Pan, W.M. Liao, S.Y. Yin, S.S. Sun, C.Y. Su, Chem. Rev. 118 (2018) 8889-8935.
[2] (a) M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 112 (2012) 1196-1231;
(b) L.Q. Ma, C. Abney, W.B. Lin, Chem. Soc. Rev. 38 (2009) 1248-1256;
(c) K. Sumida, D.L. Rogow, J.A. Mason, et al., Chem. Rev. 112 (2012) 724-781.
[3] (a) A.K. Chaudhari, H.J. Kim, I. Han, J.C. Tan, Adv. Mater. 29 (2017) 1701463;
(b) L. Chen, J.W. Ye, H.P. Wang, et al., Nat. Commun. 8 (2017) 15985;
(c) W.M. Liao, J.H. Zhang, S.Y. Yin, et al., Nat. Commun. 9 (2018) 2401.
[4] (a) S.Y. Hao, S.X. Hou, K.Van Hecke, G.H. Cui, Dalton Trans. 46 (2017) 1951-1964;
(b) T.K. Maji, K. Uemura, H.-C. Chang, R. Matsuda, S. Kitagawa, Angew. Chem. Int. Ed. 43 (2004) 3269-3272.
[5] (a) R. Liang, Y.K. Guo, Y.T. Wang, X.P. Xuan, Inorg. Chim. Acta 471 (2018) 50-56;
(b) K. Takaoka, M. Kawano, M. Tominaga, M. Fujita, Angew. Chem. Int. Ed. 44 (2005) 2151-2154.
[6] (a) S.R. Zheng, S.Y. Yin, M. Pan, et al., Inorg. Chem. Commun. 55 (2015) 116-119;
(b) M. Pan, B.B. Du, Y.X. Zhu, et al., Chem. Eur. J. 22 (2016) 2440-2451;
(c) S.L. Cai, M. Pan, S.R. Zheng, et al., CrystEngComm 14 (2012) 2308-2315.
[7] (a) L. Carlucci, G. Ciani, D.M. Proserpio, S. Rizzato, Chem. Eur. J. 8 (2002) 1519-1526;
(b) P. Mondal, B. Dey, S. Roy, et al., Cryst. Growth Des. 18 (2018) 6211-6220.
[8] (a) S. Liu, M. Guo, Y. Sun, et al., Inorg. Chim. Acta 474 (2018) 73-80;
(b) R.B. Lin, S. Xiang, B. Li, et al., Isreal J. Chem. 58 (2018) 949-961.
[9] S. Hu, K.H. He, M.H. Zeng, H.H. Zou, Y.M. Jiang, Inorg. Chem. 47 (2008) 5218-5224;
[10] H.D. Mai, I. Lee, S. Lee, H. Yoo, Eur. J. Inorg. Chem. 31 (2017) 3736-3743;
[11] (a) Z. Han, W. Shi, P. Cheng, Chin. Chem. Lett. 29 (2018) 819-822;
(b) T. Xia, J. Wang, K. Jiang, et al., Chin. Chem. Lett. 29 (2018) 861-864;
(c) W.H. Wang, Q. Gao, A.L. Li, et al., Chin. Chem. Lett. 29 (2018) 336-338.
[12] (a) M. Pan, Y.X. Zhu, K. Wu, et al., Angew. Chem. Int. Ed. 56 (2017) 14582-14586;
(b) W.M. Liao, J.H. Zhang, Z. Wang, et al., J. Mater. Chem. A 6 (2018) 11337-11345.
[13] (a) S.R. Zheng, M. Pan, K. Wu, et al., Cryst. Growth Des. 15 (2015) 625-634;
(b) Y.X. Zhu, Z.W. Wei, M. Pan, et al., Dalton Trans. 45 (2016) 943-950;