Organic Letters
Letter
ACKNOWLEDGMENTS
We acknowledge NNSFC (21320102002) for financial support.
■
REFERENCES
■
(1) (a) Chromenes, chromanones, and chromones; Ellis, G. P., Ed.; John
Willew & Sons, Inc.: 1977. (b) Saengchantara, S. T.; Wallace, T. W. Nat.
Prod. Rep. 1986, 465.
Figure 5. Synthesis of 5 and their conversion to 4.
(2) Sasaki, M.; Tsuda, M.; Sekiguchi, M.; Mikami, Y.; Kobayashi, J. Org.
Lett. 2005, 7, 4261.
which are diastereomers of 3, were implemented. As shown in
Figure 5, oxidation of pyrrolidine-fused 4-chromanols 3a, 3d, and
3h with PCC in DCM at rt gave the corresponding chroman-4-
ones 5 in excellent yields. Governed by the steric effect of the cis-
fused pyrrolidine ring, facile reduction of the carbonyl group of 5
with NaBH4 yielded almost quantitatively cis,cis-configured 4-
chromanols 4 (Figure 6) as the sole diastereomers. The slightly
(3) (a) Nibbs, A. E.; Scheidt, K. A. Eur. J. Org. Chem. 2012, 449.
(b) Zhao, D.; Beiring, B.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52,
8454 and references cited therein.
(4) The Chemistry of Enamines; Rappoport, Z., Ed.; John Wiley & Sons
Ltd.: Chichester, U.K., 1994.
(5) (a) Stork, G.; Terrell, R.; Szmuszkovicz, J. J. Am. Chem. Soc. 1954,
76, 2029. (b) Stork, G.; Landesman, H. K. J. Am. Chem. Soc. 1956, 78,
5128.
(6) For an overview, see: (a) Matsubara, R.; Kobayashi, S. Acc. Chem.
Res. 2008, 41, 292. For selected recent examples of the reactions of
secondary enamides, see: (b) Terada, M.; Machioka, K.; Sorimachi, K.
Angew. Chem., Int. Ed. 2006, 45, 2254. (c) Terada, M.; Machioka, K.;
Sorimachi, K. J. Am. Chem. Soc. 2007, 129, 10336. (d) Liu, H.;
Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. J. Am. Chem. Soc. 2009,
131, 4598. (e) Dagousset, G.; Zhu, J.; Masson, G. J. Am. Chem. Soc. 2011,
133, 14804.
(7) Carbery, D. R. Org. Biomol. Chem. 2008, 6, 3455.
(8) Gopalaiah, K.; Kagan, H. B. Chem. Rev. 2011, 111, 4599.
(9) For some recent examples of reactions of tertiary enamides, see:
(a) Pankajakshan, S.; Xu, Y.-H.; Cheng, J. K.; Low, M. T.; Loh, T.-P.
Angew. Chem., Int. Ed. 2012, 51, 5701. (b) Liu, Y.; Li, D.; Park, C.-M.
Angew. Chem., Int. Ed. 2011, 50, 7333. (c) Gourdet, B.; Lam, H. W.
Angew. Chem., Int. Ed. 2010, 49, 8733.
Figure 6. X-ray structure of (3aR, 4R, 9aS)-3d (left) and (3aR, 4S, 9aS)-
4d (right).
lower ee values of chroman-4-ones 5 compared to that of the
reactants 3 were attributed to the use of starting materials that
contain a tiny amount of minor diastereomer 4 of a lower ee. The
enantiomeric purity of the final products 4 was further improved
to 95.5%−98.3% after recrystallization (see Supporting
Information).
(10) Suga, S.; Nishida, T.; Yamada, D.; Nagaki, A.; Yoshida, J.-i. J. Am.
Chem. Soc. 2004, 126, 14338.
(11) Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.-
i.; Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982, 104, 6697.
(12) Cossey, K. N.; Funk, R. L. J. Am. Chem. Soc. 2004, 126, 12216.
(13) (a) L; Yang, L.; Zheng, Q.-Y.; Wang, D.-X.; Huang, Z.-T.; Wang,
M.-X. Org. Lett. 2008, 10, 2461. (b) Yang, L.; Tong, S.; Wang, D.-X.;
Huang, Z.-T.; Zhu, J.; Wang, M.-X. Synlett 2011, 927.
(14) (a) Yang, L.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. J. Am.
Chem. Soc. 2009, 131, 10390. (b) Yang, L.; Lei, C.-H.; Wang, D.-X.;
Huang, Z.-T.; Wang, M.-X. Org. Lett. 2010, 12, 3918.
(15) Tong, S.; Wang, D.-X.; Zhao, L.; Zhu, J.; Wang, M.-X. Angew.
Chem., Int. Ed. 2012, 51, 4417.
In summary, we have established a general and efficient chiral
BINOL-Ti(OiPr)4-catalyzed reaction of tertiary enamides with
salicylaldehydes under mild conditions. The reaction proceeds
through the enaminic addition of enamide to aldehyde and the
interception of the resulting iminium by the phenolic hydroxy
group to afford diverse 4-chromanol derivatives in high yields
with excellent enantio- and diastereoselectivity. The synthetic
potential of the method has been demonstrated by facile
transformation of cis,trans-configured pyrrolidine-fused 4-
chromanols into chroman-4-ones upon oxidation and then to
cis,cis-configured 4-chromanol diastereomers after diastereose-
lective reduction. The present study opens a new avenue to the
divergent synthesis of functional molecules based on difunction-
alizations of unique tertiary enamide synthons. The catalytic
mechanism is being actively perused in this laboratory, and the
results will be reported in due course.
(16) Tong, S.; Yang, X.; Wang, D.-X.; Zhao, L.; Zhu, J.; Wang, M.-X.
Tetrahedron 2012, 68, 6492.
(17) (a) Lei, C.-H.; Wang, D.-X.; Zhao, L.; Zhu, J.; Wang, M.-X. J. Am.
Chem. Soc. 2013, 135, 4708. (b) Lei, C.-H.; Wang, D.-X.; Zhao, L.; Zhu,
J.; Wang, M.-X. Chem.Eur. J. 2013, 19, 16981.
(18) Balsells, J.; Davis, T. J.; Carroll, P.; Walsh, P. J. J. Am. Chem. Soc.
2002, 124, 10336.
(19) Bao, H.; Zhou, J.; Wang, Z.; Guo, Y.; You, T.; Ding, K. J. Am.
Chem. Soc. 2008, 130, 10116 and references cited therein.
ASSOCIATED CONTENT
* Supporting Information
■
S
Characterization and spectroscopic data, X-ray structures (cif
files). This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
D
dx.doi.org/10.1021/ol5029964 | Org. Lett. XXXX, XXX, XXX−XXX