ORGANIC
LETTERS
2011
Vol. 13, No. 17
4550–4553
Total Synthesis of the Natural Product (()-
Dibromophakellin and Analogues
Nicole M. Hewlett and Jetze J. Tepe*
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824,
United States
Received June 28, 2011
ABSTRACT
(()-Dibromophakellin has been synthesized in two steps from a known alkene intermediate. The key step in the synthesis is the NBS olefin
activation to facilitate the addition of a guanidine molecule across the double bond.
The oroidin family of alkaloids is a highly diverse and
complex class of biologically active secondary marine
sponge metabolites containing characteristic pyrrole-2-
carboxamide and 2-aminoimidazoline (or derivatives
thereof) moieties. Arguably the most well-known member
of the pyrrole-imidazole family is palau’amine (Figure 1),
which exhibits exciting cytotoxic and immunosuppressive
activity.1 The architecturally daunting natural product
finally succumbed to total synthesis by Baran and co-
workers in 2010.2
dibromophakellstatin has been completed, both racemi-
cally and asymmetrically.5ꢀ15 Additionally, the syntheses
of the analogues bromophakellstatin8,9 and phakellstatin
have been accomplished,6,13ꢀ15 the latter often as an inter-
mediate in the total synthesis of dibromophakellstatin.
The closely related natural product (ꢀ)-dibromophakel-
lin was first isolated in 1969 by Sharma,16,17 and its enantio-
mer, (þ)-dibromophakellin, was later isolated in 1985 by
Ahond and Poupat.18 Since that time, the total synthesis of
dibromophakellin has been completed racemically,11,12,19 as
Recently, much attention has been given to other mem-
bers of this family of pyrrole-imidazole marine alkaloids,
including dibromophakellin and dibromophakellstatin
(Figure 1), which share a similar tetracyclic framework
with palau’amine. The structural similarities between
palau’amine and the phakellins and phakellstatins sparked
our interest in the synthesis of these agents and their
analogues, in order to further explore their biological
properties.3,4
(5) Wiese, K. J.; Yakushijin, K.; Horne, D. A. Tetrahedron Lett.
2002, 43, 5135.
(6) Chung, R.; Yu, E.; Incarvito, C. D.; Austin, D. J. Org. Lett. 2004,
6, 3881.
(7) Feldman, K. S.; Skoumbourdis, A. P. Org. Lett. 2005, 7, 929.
€
(8) Jacquot, D. E. N.; Zollinger, M.; Lindel, T. Angew. Chem., Int.
Ed. 2005, 44, 2295.
€
(9) Zollinger, M.; Mayer, P.; Lindel, T. J. Org. Chem. 2006, 71, 9431.
(10) Lu, J.; Tan, X.; Chen, C. J. Am. Chem. Soc. 2007, 129, 7768.
(11) Feldman, K. S.; Fodor, M. D.; Skoumbourdis, A. P. Synthesis
2009, 3162.
(12) Feldman, K. S.; Skoumbourdis, A. P.; Fodor, M. D. J. Org.
Chem. 2007, 72, 8076.
The phakellins and phakellstatins have been the focus
of a number of synthetic efforts. The total synthesis of
(13) Poullennec, K. G.; Romo, D. J. Am. Chem. Soc. 2003, 125, 6344.
€
(14) Zollinger, M.; Mayer, P.; Lindel, T. Synlett 2007, 2756.
(15) Imaoka, T.; Akimoto, T.; Iwamoto, O.; Nagasawa, K. Chem.;
Asian J. 2010, 5, 1810.
(16) Burkholder, P. R.; Sharma, G. M. Lloydia 1969, 32, 466.
(17) Sharma, G. M.; Burkholder, P. R. J. Chem. Soc., Chem. Com-
mun. 1971, 151.
(1) Kinnel, R. B.; Gehrken, H. P.; Scheuer, P. J. J. Am. Chem. Soc.
1993, 115, 3376.
(2) Seiple, I. B.; Su, S.; Young, I. S.; Lewis, C. A.; Yamaguchi, J.;
Baran, P. S. Angew. Chem., Int. Ed. 2010, 49, 1095.
€
(3) Zollinger, M.; Kelter, G.; Fiebig, H.-H.; Lindel, T. Bioorg. Med.
Chem. Lett. 2007, 17, 346.
(18) de Nanteuil, G.; Ahond, A.; Guilhem, J.; Poupat, C.; Dau,
E. T. H.; Potier, P.; Pusset, M.; Pusset, J.; Laboute, P. Tetrahedron
1985, 41, 6019.
(4) Pettit, G. R.; McNulty, J.; Herald, D. L.; Doubek, D. L.; Chapuis,
J. C.; Schmidt, J. M.; Tackett, L. P.; Boyd, M. R. J. Nat. Prod. 1997,
60, 180.
€
(19) Foley, L. H.; Buchi, G. J. Am. Chem. Soc. 1982, 104, 1776.
r
10.1021/ol201741r
Published on Web 07/28/2011
2011 American Chemical Society