Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 6
COMMUNICATION
Journal Name
6
7
4, 1744–1748. (b) A. Tinoco, Y. Wei, J.-P. Bacik, D. M. Carminati,
In conclusion, we have disclosed that decoy molecules can
be utilised as auxiliaries to modulate the secondary
5
DOI: 10.1039/D0CC04883F
E. J. Moore, N. Ando, Y. Zhang and R. Fasan, ACS Catal., 2019, 9,
514–1524. (c) D. A. Vargas, R. L. Khade, Y. Zhang and R. Fasan,
13
coordination sphere of the P450BM3 active centre to tune
stereoselectivity for carbene-mediated cyclopropanations, a
reaction type not found to exist in nature. This adds a further
milestone to the chemical transformations compatible with our
decoy molecule system, greatly expanding their versatility.
Moreover, merely two mutations and a decoy molecule were
required to deliver highly cis- and enantioselective
cyclopropanation, something that has only been traditionally
achieved by laborious directed evolution or extensive screening
from nature. The work highlighted herein has successfully
appended decoy molecules to the repertoire of enzyme
engineering techniques available to modulate the
stereoselectivity of cyclopropanation. Molecular dynamics
simulations of the F87A/T268A mutant with R-Ibu-Phe hinted at
the mechanism governing enhanced selectivity, and we believe
this may contribute to the future design of P450BM3-based
cyclopropanation catalysts in conjunction with decoy molecules.
Although still in its infancy, the present study promises the
exploitation of the decoy molecule system to achieve a more
selective catalysis, even for a panel of abiological reactions.
Various types of carbene and nitrene transfer reactions, besides
cyclopropanations, have been showcased by other research
1
Angew. Chem. Int. Ed., 2019, 58, 10148–10152. (d) X. Ren, A. L.
Chandgude and R. Fasan, ACS Catal., 2020, 10, 2308–2313.
(a) G. Sreenilayam, E. J. Moore, V. Steck and R. Fasan, Adv. Synth.
Catal., 2017, 359, 2076–2089. (b) H. M. Key, P. Dydio, D. S. Clark
and J. F. Hartwig, Nature, 2016, 534, 534–537. (c) H. M. Key, P.
Dydio, Z. Liu, J. Y.-E. Rha, A. Nazarenko, V. Seyedkazemi, D. S.
Clark and J. F. Hartwig, ACS Cent. Sci., 2017, 3, 302–308. (d) P.
Srivastava, H. Yang, K. Ellis-Guardiola and J. C. Lewis, Nat.
Commun., 2015, 6, 7789. (e) H. Yang, A. M. Swartz, H. J. Park, P.
Srivastava, K. Ellis-Guardiola, D. M. Upp, G. Lee, K. Belsare, Y. Gu,
C. Zhang, R. E. Moellering and J. C. Lewis, Nat. Chem., 2018, 10,
3
18–324. (f) K. Oohora, H. Meichin, L. Zhao, M. W. Wolf, A.
Nakayama, J. Hasegawa, N. Lehnert and T. Hayashi, J. Am. Chem.
Soc., 2017, 139, 17265–17268. (g) R. Stenner, J. W. Steventon, A.
Seddon and J. L. R. Anderson, PNAS, 2020, 117, 1419–1428. (h) L.
Villarino, K. E. Splan, E. Reddem, L. Alonso ‐ Cotchico, C.
Gutiérrez de Souza, A. Lledós, J.-D. Maréchal, A.-M. W. H.
Thunnissen and G. Roelfes, Angew. Chem. Int. Ed., 2018, 57,
7785–7789. (i) J. Zhao, D. G. Bachmann, M. Lenz, D. G. Gillingham
and T. R. Ward, Catal. Sci. Technol., 2018, 8, 2294–2298.
(a) O. Shoji, T. Fujishiro, H. Nakajima, M. Kim, S. Nagano, Y. Shiro
and Y. Watanabe, Angew. Chem. Int. Ed., 2007, 46, 3656–3659.
8
9
(
b) N. Kawakami, O. Shoji and Y. Watanabe, Angew. Chem. Int.
Ed., 2011, 50, 5315–5318. (c) O. Shoji, T. Kunimatsu, N. Kawakami
and Y. Watanabe, Angew. Chem. Int. Ed., 2013, 52, 6606–6610.
(d) H. Onoda, O. Shoji and Y. Watanabe, Dalton Trans., 2015, 44,
7a,b,14
groups,
and we anticipate that the latent potential of
1
5316–15323.
P450BM3 for such reactions could be unlocked by combining
decoy molecules with conventional protein engineering
strategies such as mutagenesis and replacement of haem with
(a) O. Shoji, S. Yanagisawa, J. K. Stanfield, K. Suzuki, Z. Cong, H.
Sugimoto, Y. Shiro and Y. Watanabe, Angew. Chem. Int. Ed., 2017,
5
6, 10324–10329. (b) M. Karasawa, J. K. Stanfield, S. Yanagisawa,
15
artificial metallocomplexes.
O. Shoji and Y. Watanabe, Angew. Chem. Int. Ed., 2018, 57,
12264–12269; Angew. Chem., 2018, 130, 12444-12449.
0 (a) Z. Cong, O. Shoji, C. Kasai, N. Kawakami, H. Sugimoto, Y. Shiro
and Y. Watanabe, ACS Catal., 2015, 5, 150–156. (b) S. Ariyasu, Y.
Kodama, C. Kasai, Z. Cong, J. K. Stanfield, Y. Aiba, Y. Watanabe
and O. Shoji, ChemCatChem, 2019, 11, 4709–4714.
This work was supported by JST CREST Grant Number
JPMJCR15P3 to O.S., Japan. This work was also supported by
JSPS KAKENHI (JP15H05806 to O.S., JP18J23340 to K.S., and
JP18J15250 to Y. S.), Japan.
1
1
1 K. Suzuki, J. K. Stanfield, O. Shoji, S. Yanagisawa, H. Sugimoto, Y.
Shiro and Y. Watanabe, Catal. Sci. Technol., 2017, 7, 3332–3338.
References
12 J. G. Gober, A. E. Rydeen, E. J. Gibson ‐ O ’ Grady, J. B.
Leuthaeuser, J. S. Fetrow and E. M. Brustad, ChemBioChem, 2016,
1
2
3
4
D. Y.-K. Chen, R. H. Pouwer and J.-A. Richard, Chem. Soc. Rev., 2012,
1, 4631–4642.
S. Miyamura, K. Itami and J. Yamaguchi, Synthesis, 2017, 49, 1131–
149.
Maurice. Brookhart and W. B. Studabaker, Chem. Rev., 1987, 87,
11–432.
1
7, 394–397.
3 V. Polic and K. Auclair, Bioorganic & Medicinal Chemistry, 2014,
2, 5547–5554.
4
1
1
2
1
4 (a) C. K. Prier, R. K. Zhang, A. R. Buller, S. Brinkmann-Chen and F.
H. Arnold, Nat. Chem., 2017, 9, 629–634. (b) R. K. Zhang, K. Chen,
X. Huang, L. Wohlschlager, H. Renata and F. H. Arnold, Nature,
4
(a) H. Xu, Y.-P. Li, Y. Cai, G.-P. Wang, S.-F. Zhu and Q.-L. Zhou, J. Am.
Chem. Soc., 2017, 139, 7697–7700. (b) H. Wang, D. M. Guptill, A.
Varela-Alvarez, D. G. Musaev and H. M. L. Davies, Chem. Sci.,
2
019, 565, 67–72. (c) P. Dydio, H. M. Key, A. Nazarenko, J. Y.-E.
Rha, V. Seyedkazemi, D. S. Clark and J. F. Hartwig, Science, 2016,
54, 102–106.
5 (a) N. Kawakami, O. Shoji and Y. Watanabe, ChemBioChem, 2012,
3, 2045–2047. (b) K. Omura, Y. Aiba, H. Onoda, J. K. Stanfield, S.
3
2
013, 4, 2844–2850. (c) K. M. Chepiga, C. Qin, J. S. Alford, S.
1
Chennamadhavuni, T. M. Gregg, J. P. Olson and H. M. L. Davies,
Tetrahedron, 2013, 69, 5765–5771. (d) S. Zhu, J. A. Perman and X.
P. Zhang, Angew. Chem. Int. Ed., 2008, 47, 8460–8463. (e) S.
Kanchiku, H. Suematsu, K. Matsumoto, T. Uchida and T. Katsuki,
Angew. Chem. Int. Ed., 2007, 46, 3889–3891.
1
Ariyasu, H. Sugimoto, Y. Shiro, O. Shoji and Y. Watanabe, Chem.
Commun., 2018, 54, 7892–7895. (c) J. K. Stanfield, K. Omura, A.
Matsumoto, C. Kasai, H. Sugimoto, Y. Shiro, Y. Watanabe and O.
Shoji, Angew. Chem. Int. Ed., 2020, 59, 7611–7618; Angew. Chem.,
5
(a) P. S. Coelho, E. M. Brustad, A. Kannan and F. H. Arnold, Science,
2
020, 132, 7681-7689.
2
013, 339, 307–310. (b) K. E. Hernandez, H. Renata, R. D. Lewis,
S. B. J. Kan, C. Zhang, J. Forte, D. Rozzell, J. A. McIntosh and F. H.
Arnold, ACS Catal., 2016, 6, 7810–7813. (c) A. M. Knight, S. B. J.
Kan, R. D. Lewis, O. F. Brandenberg, K. Chen and F. H. Arnold, ACS
Cent. Sci., 2018, 4, 372–377. (d) O. F. Brandenberg, C. K. Prier, K.
Chen, A. M. Knight, Z. Wu and F. H. Arnold, ACS Catal., 2018, 8,
2
629–2634. (e) B. J. Wittmann, A. M. Knight, J. L. Hofstra, S. E.
Reisman, S. B. Jennifer Kan and F. H. Arnold, ACS Catal., 2020, 10,
112–7116.
7
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins