1074
N. Karalı et al. / European Journal of Medicinal Chemistry 45 (2010) 1068–1077
0
0
0
0
R
2
caused significantly decrease in reducing power (except 4a),
whereas in the anti-LP, DPPH and ABTS assays, there were only
minor variations in activities of -methyl substituted
compounds. However, 4a incorporating methyl both at R and R
4.3.2. 5 -Chloro-3H-spiro[1,3-benzothiazole-2,3 -indol]-2 (1 H)-one (3b)
ꢂ
Yellow crystal; yield 60%; m.p. 219 C; IR (KBr):
y
3302 (NH),
(ppm): 6.54 (d, 1H,
–H), 6.63 (t, 1H, J ¼ 7.63 Hz, benzothia. C
H), 6.85 (d, 1H, J ¼ 8.23 Hz, ind. C –H), 6.91 (dt, 1H, J ¼ 7.63, 1.22 Hz,
benzothia. C –H), 7.28 (s,
–H), 7.04 (d, 1H, J ¼ 7.32 Hz, benzothia. C
–H), 7.52
–H), 10.48 (s, 1H, ind. NH). LCMS-APCI (þ)
1
R
2
1714 (C]O); H NMR (DMSO-d
6
, 500 MHz) d
1
2
J ¼ 7.58 Hz, benzothia. C
4
6
–
was found to be the most potent antioxidant described in this
study. Although the indole derivatives under study were found to
be effective antioxidant candidates in these systems, their
potential exploitable beneficial effects and safety in humans need
to be proven in clinical trials.
7
5
7
1H, benzothia. NH), 7.33 (dd, 1H, J ¼ 8.23, 2.13 Hz, ind. C
6
(d, 1H, J ¼ 2.14 Hz, ind. C
4
þ
m/z (%): 289 (MH , 40), 287 (100). Analyses (%) Calcd for
14 9 2
C H ClN OS (288.75): C, 58.23; H, 3.14; N, 9.70. Found: C, 58.34; H,
2.78; N, 9.59.
4
. Experimental section
0
0
0
0
4
.3.3. 5 -Nitro-3H-spiro[1,3-benzothiazole-2,3 -indol]-2 (1 H)-one
4
.1. Chemistry
(3c)
ꢂ
Orange powder; yield 71%; m.p. 212–3 C; IR (KBr):
y
3354 (NH),
(ppm): 6.61 (d, 1H,
–H), 6.69 (t, 1H, J ¼ 7.68 Hz, benzothia. C
H), 6.95 (t,1H, J ¼ 7.67 Hz, benzothia. C –H), 7.07 (d, J ¼ 8.63 Hz, ind.
–H), 7.10 (d, 1H, J ¼ 7.35 Hz, benzothia. C –H), 7.33 (s, 1H, ben-
zothia. NH), 8.25 (dd, 1H, J ¼ 8.63, 2.24 Hz, ind. C –H), 8.27 (d, 1H,
Soybean lecithin (L-
a
-phosphatidylcholine Type IV-S), 2,2-
1
ꢀ
6
1732 (C]O); H NMR (DMSO-d , 500 MHz) d
diphenyl-1-picrylhydrazyl (DPPH ),
5
5
a-tocopherol, ascorbic acid,
J ¼ 7.99 Hz, benzothia. C
4
6
–
-methylisatin, 5-(trifluorometoxy)isatin, 5-chloroisatin and
-nitroisatin were purchased from Sigma–Aldrich Chemical Co. (St.
5
0
C
7
7
Louis, MO, USA). Butylated hydroxytoluene (BHT), 2,2 -azino-bis(3-
ꢀ
þ
6
ethylbenzthiazoline-6-sulphonic acid) (ABTS ) diammonium salt,
-hydroxy-2,5,7,8,-tetramethylchroman-2-carboxylic acid (Trolox),
J ¼ 2.24 Hz, ind. C
4
–H), 11.07 (s, 1H, ind. NH). Analyses (%) Calcd for
S (299.30): C, 56.18; H, 3.03; N, 14.04. Found: C, 56.20; H,
.03; N, 13.63.
6
C
3
14 9 3 3
H N O
sodium hydride (NaH), 5-bromoisatin and 2-aminothiophenol
were purchased from Fluka Chemical Co. (Bushs, Switzerland).
Potassium ferricyanide, thiobarbituric acid (TBA), trichloroacetic
acid (TCA), ferric chloride and iodomethane were purchased from
Merck (Darmstadt, Germany). All other chemicals used were of
analytical grade. Melting points were estimated with a Buchi 540
melting point apparatus in open capillaries and are uncorrected.
Elemental analyses were performed on a Thermo Finnigan Flash EA
0 0
.4. The synthesis of 1 -methyl-3H-spiro[1,3-benzothiazole-2,3 -
4
0
0
indol]-2 (1 H)-ones (4a–e)
To a solution of 5-substituted 1-methyl-1H-indole-2,3-diones 2
3.5 mmol) in ethanol (15 mL) was added 2-aminothiophenol
(3.5 mmol). The mixture was refluxed on a water bath for 5 h. The
product formed after cooling was filtered and recrystallized from
ethanol.
(
1112 elemental analyzer. IR spectra were recorded on KBr discs,
1
using a Perkin–Elmer Model 1600 FT-IR spectrometer. H NMR and
UNITY
HSQC spectra were obtained on Varian
photometers using DMSO-d
AGILENT 1100 MSD instrument.
INOVA 500 spectro-
6
. Mass spectra were determined on an
0
0
0
0
4
.4.1. 1,5 -Dimethyl-3H-spiro[1,3-benzothiazole-2,3 -indol]-2 -one (4a)
ꢂ
Brown powder; yield 41%; m.p. 182–3 C; IR (KBr):
y
3303 (NH),
(ppm): 2.28 (s, 3H,
), 6.52 (d, 1H, J ¼ 7.32 Hz, benzothia.
–H), 6.90 (dt, J ¼ 7.62,
–H), 6.92 (d, J ¼ 7.93 Hz, 1H, ind. C –H),
–H), 7.18 (d, 2H,
–H, benzothia. NH), 7.41 (s, 1H, ind. C –H). HSQC
), 26.91 (N–CH ), 74.80 (spiro
), 109.46 (ind. C ), 119.40 (benzothia. C ),
), 124.77 (ind. C3a), 126.41 (ind. C ), 126.46
), 130.04 (ind. C ), 131.43 (ind. C ), 132.96 (benzothia.
7a), 141.04 (ind. C7a), 147.68 (benzothia. C3a), 175.12 (ind. C ).
Analyses (%) Calcd for C16 OS (282.36): C, 68.06; H, 5.00; N,
9.92. Found: C, 68.14; H, 5.13, N, 9.57.
4
.2. The synthesis of 5-substituted 1-methyl-1H-indole-2,3-diones
1
1
696 (C]O); H NMR (DMSO-d
6
, 500 MHz)
d
(2a–e)
3 3
ind. 5-CH ), 3.08 (s, 3H, N–CH
C
1
7
4
–H), 6.63 (t, 1H, J ¼ 7.32 Hz, benzothia. C
6
A
suspension of 5-substituted 1H-indole-2,3-diones 1a–e
.22 Hz, 1H, benzothia. C
5
7
(
(
5 mmol) and NaH (60% suspension in oil) (0.2 g) in anhydrous DMF
5 mL) was stirred for 0.5 h at room temperature. After addition of
.03 (dd, J ¼ 7.62, 1.22 Hz, 1H, benzothia. C
7
J ¼ 7.80 Hz, ind. C
6
4
iodomethane (15 mmol), the mixture was refluxed for 4 h. The
product was poured onto ice and water, and then filtered.
(
DMSO-d
6
)
d
(ppm): 21.19 (ind. 5-CH
3
3
C), 109.17 (benzothia. C
21.74 (benzothia. C
(benzothia. C
4
7
6
1
7
4
0
4
2
.3. The synthesis of 3H-spiro[1,3-benzothiazole-2,3 -indol]-
5
5
6
0
0
(1 H)-ones (3a–c)
C
2
14 2
H N
To a solution of 5-substituted 1H-indole-2,3-diones 1 (3.5 mmol)
in ethanol (15 mL) was added 2-aminothiophenol (3.5 mmol). The
mixture was refluxed on a water bath for 5 h. The product that was
formed after cooling was filtered and recrystallized from ethanol.
0
0
4.4.2. 1 -Methyl-5 -trifluoromethoxy-3H-spiro[1,3-benzothiazole-
0
0
2,3 -indol]-2 -one (4b)
Yellow crystal; yield 39%; m.p. 187–9 C; IR (KBr):
ꢂ
y
3307 (NH),
(ppm): 3.13 (s, 3H, N–
–H), 6.66 (dt, 1H, J ¼ 7.62,
–H), 6.93 (dt, 1H, J ¼ 7.87, 1.22 Hz, benzothia.
–H), 7.06 (d, 1H, J ¼ 8.54 Hz, ind. C –H), 7.15 (d, J ¼ 7.86 Hz, ben-
zothia. C
–H), 7.28 (s, 1H, benzothia. NH), 7.42 (dd, 1H, J ¼ 8.54,
1.83 Hz, ind. C –H). HSQC
–H), 7.55 (d, 1H, J ¼ 2.44 Hz, ind. C
(DMSO-d (ppm): 27.11 (N–CH ), 74.55 (spiro C), 109.43 (ben-
zothia. C ), 110.97 (benzothia. C ), 119.34 (ind. C ), 119.71 (benzo-
thia. C ), 120.85 (CF O), 121.89 (ind. C ), 124.45 (ind. C3a), 124.58
(ind. C ), 126.59 (benzothia. C ), 131.93 (ind. C7a), 142.64 (benzothia.
7a), 144.77 (ind. C
0
0
0
0
1
4
.3.1. 5 -Methyl-3H-spiro[1,3-benzothiazole-2,3 -indol]-2 (1 H)-
one (3a)
Yellow crystal; yield 74%; m.p. 216 C; IR (KBr):
1703 (C]O); H NMR (DMSO-d
CH
), 6.58 (d, 1H, J ¼ 7.93 Hz, benzothia. C
1.22 Hz, benzothia. C
6
, 500 MHz) d
3
4
ꢂ
y
3299 (NH),
(ppm): 2.25 (s, 3H, ind.
–H), 6.61 (dt, 1H,
6
1
1
5
711 (C]O); H NMR (DMSO-d
-CH
), 6.51 (d, 1H, J ¼ 7.62 Hz, benzothia. C
J ¼ 7.63, 1.22 Hz, benzothia. C –H), 6.71 (d, 1H, J ¼ 7.93 Hz, ind. C
H), 6.89 (dt, 1H, J ¼ 7.62, 1.22 Hz, benzothia. C
6
, 500 MHz)
d
C
5
7
3
4
7
6
7
–
6
4
5
–H), 7.01 (d, 1H,
6
)
d
3
J ¼ 7.62 Hz, benzothia. C
7
–H), 7.08 (dd, 1H, J ¼ 7.93, 1.83 Hz, ind. C
6
–
–H),
4
7
4
H), 7.22 (s, 1H, benzothia. NH), 7.36 (d, 1H, J ¼ 0.61 Hz, ind. C
4
6
3
7
þ
1
(
0.22 (s, 1H, ind. NH). LCMS-APCI (þ) m/z (%): 269 (MH , 6), 267
6
5
100). Analyses (%) Calcd for C15
12
H N
2
OS (268.33): C, 67.14; H, 4.51;
C
5
), 147.38 (benzothia. C3a), 175.18 (ind. C
2
). LCMS-
þ
N, 10.44. Found: C, 67.00; H, 4.35; N, 10.47.
APCI (þ) m/z (%): 353 (MH , 100). Analyses (%) Calcd for