50 spectrophotometer fitted with Hellma optical fibers (Hellma,
041.002-UV) and an immersion probe made of quartz suprazil
(Hellma, 661.500-QX). Spectrophotometric titration of the cupric
complexes with L was thereafter carried out. About one equivalent
of Cu(II) perchlorate ([Cu(II)]tot = 1.40 ¥ 10-4 M) was added to
40 mL of L (1.41 ¥ 10-4 M) in a jacketed cell (Metrohm) maintained
Ministry of Higher Education and Scientific Research is also
gratefully acknowledged for the financial support of S.A.
Notes and references
1 P. de Bie, P. Muller, C. Wijmenga and L. W. J. Klomp, J. Med. Genet.,
2007, 44, 673.
2 (a) E. Gaggelli, H. Kozlowski, D. Valensin and G. Valensin, Chem.
Rev., 2006, 106, 1995; (b) G. J. Liu, W. D. Huang, R. D. Moir, C. R.
Vanderburg, B. Lai, Z. C. Peng, R. E. Tanzi, J. T. Rogers and X. D.
Huang, J. Struct. Biol., 2006, 155, 45.
3 T. Chen, X. Wang, Y. He, C. Zhang, Z. Wu, K. Liao, J. Wang and Z.
Guo, Inorg. Chem., 2009, 48, 5801.
4 (a) L. Hong, W. D. Bush, L. Q. Hatcher and J. Simon, J. Phys. Chem.
B, 2008, 112, 604; (b) J. Shearer and V. A. Szalai, J. Am. Chem. Soc.,
2008, 130, 17826.
◦
at 25.0(2) C. The initial pH was adjusted to ~ 2–3 with HClO4
(Fluka, ~70%), and the titration of the cupric complexes (2.59 <
pH < 11.17) was then carried out by addition of known volumes of
NaOH solutions (BdH, AnalaR) with an Eppendorf microburette.
Special care was also taken to ensure that complete equilibration
was attained. Absorption spectra vs. pH were recorded using the
Varian Cary 50 spectrophotometer described above.
5 M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell and W. R.
Markesbery, J. Neurol. Sci., 1998, 158, 47.
Spectrophotometric titrations of L by Cu(II) at fixed pH
6 P. I. Moreira, M. S. Santos, C. R. Oliveira, J. C. Shenk, A. Nunomura,
M. A. Smith, X. Zhu and G. Perry, CNS Neurol. Disord.: Drug Targets,
2008, 7, 3.
7 (a) F. Molina-Holgado, R. C. Hider, A. Gaeta, R. Williams and P.
Francis, BioMetals, 2007, 20, 639; (b) A. Gaeta and R. C. Hider,
Br. J. Pharmacol., 2005, 146, 1041; (c) Z. D. Liu and R. C. Hider,
Med. Res. Rev., 2002, 22, 26.
8 C. Rodriguez-Rodriguez, N. Sanchez de Groot, A. Rimola, A. Alvarez-
Larena, V. Lloveras, J. Vidal-Gancedo, S. Ventura, J. Vendrell, M.
Sodupe and P. Gozalez-Duarte, J. Am. Chem. Soc., 2009, 131,
1436.
9 D. W. Mc Carthy, R. E. Shefer, R. E. Klinkowstein, L. A. Bass, W. H.
Margeneau, C. S. Cutler, C. J. Anderson and M. Welch, Nucl. Med.
Biol., 1997, 24, 35.
10 S. M. Ametamey, M. Honer and P. A. Schubiger, Chem. Rev., 2008,
108, 1501.
11 (a) S. V. Smith, J. Inorg. Biochem., 2004, 98, 1874; (b) M. Shoken and
C. J. Anderson, Acc. Chem. Res., 2009, 42, 832.
12 T. J. Hubin, J. M. McCormick, S. R. Collinson, N. W. Alcock and D. H.
Busch, Chem. Commun., 1998, 1675.
Stock solutions of L (~ 2.5 ¥ 10-3 M) were prepared in water
and then freshly diluted with HClO4 (10-2 M or 10-1 M) to
obtain a ligand concentration of ~ 2 ¥ 10-4 M. The ionic strength
was kept constant at 0.1 M with either sodium perchlorate
(NaClO4·H2O, Merck, p.a.) or perchloric acid (Fluka, ~70%). The
spectrophotometric titrations of L by Cu(II) were thus carried out
on solutions at pH ~ 2 (10-2 M HClO4) and at pH ~ 1.0 (10-1
M
HClO4). Microvolumes of a concentrated solution of Cu(II)
(4.4 ¥ 10-3 M) were added to 2 mL of the ligand solutions in a
1 cm path length optical cell (the [Cu]tot/[L]tot ratio varied from 0
to 2). Special care was taken to ensure that complete equilibration
was attained. The corresponding UV-Vis spectra were recorded
from 230 nm to 800 nm on a Cary 300 (Varian) spectrophotometer
maintained at 25.0(2) ◦C by the flow of a Lauda E200 thermostat.
Analysis and processing of the spectroscopic data
13 L. A. Bass, M. Wang, M. J. Welch and C. J. Anderson, Bioconjugate
Chem., 2000, 11, 527.
The spectrophotometric data were analyzed with Specfit30a–c pro-
gram which adjusts the absorptivities and the stability constants
of the species formed at equilibrium. Specfit uses factor analysis to
reduce the absorbance matrix and to extract the eigenvalues prior
to the multi-wavelength fit of the reduced data set according to the
Marquardt algorithm.30d,e
14 A. Valade, D. Urban and J.-M. Beau, ChemBioChem, 2006, 7,
1023.
15 (a) L. Burai, J. Ren, Z. Kovacs, E. Bru1cher and A. D. Sherry, Inorg.
Chem., 1998, 37, 69; (b) X. Sun, M. Wuest, Z. Kovacs, A. D. Sherry, R.
Motekaitis, Z. Wang, A. E. Martell, M. J. Welch and C. J. Anderson,
JBIC, J. Biol. Inorg. Chem., 2003, 8, 217.
16 (a) R. N. Patel, R. P. Shrivastava, N. Singh, S. Kumar and K. B.
Pandeya, Indian J. Chem., 2001, 40A, 361; (b) E. A. Biryuk and V. A.
Nazarenko, Zh. Neorg. Khim., 1973, 18, 2964.
17 L. Pellegatti, J. Zhang, B. Drahos, S. Vilette, F. Suzenet, G. Guillaumet,
S. Petoud and E. Toth, Chem. Commun., 2008, 6591.
18 (a) I. Lukes, J. Kotek, P. Vojtisek and P. Hermann, Coord. Chem. Rev.,
2001, 216–217, 287; (b) C. F. G. C. Geraldes, A. D. Sherry and W. P.
Cacheris, Inorg. Chem., 1989, 28, 3336.
19 K. P. Guerra, R. Delgado, L. M. P. Lima, M. G. B. Drew and V. Fe´lix,
Dalton Trans., 2004, 1812.
20 (a) K. Popov, E. Niskanen, H. Ro¨nkko¨ma¨ki and L. H. J. Lajunen,
New J. Chem., 1999, 23, 1209; (b) G. V. Polyanchuk, L. M. Shkol’nikova,
M. V. Rudomino, N. M. Dyatlova and S. S. Makarevich, J. Struct.
Chem., 1986, 26, 586.
21 (a) T. Kiss, E. Farkas and H. Kozlowski, Inorg. Chim. Acta, 1989,
155, 281; (b) M. Wozniak and G. Nowogrocki, Talanta, 1979, 26,
1135.
22 T. Ichikawa and K. Sawada, Bull. Chem. Soc. Jpn., 1997, 70, 829.
23 (a) H. Irving and R. J. P. Williams, J. Chem. Soc., 1953, 3192; (b) R. J.
Motekaitis, A. E. Martell and R. A. Hancock, Coord. Chem. Rev.,
1994, 133, 39; (c) H.-J. Schneider, Angew. Chem., Int. Ed., 2009, 48,
3924.
24 L. R. Falvello, J. Chem. Soc., Dalton Trans., 1997, 4463.
25 K. Sawada, T. Kanda, Y. Naganuma and T. Suzuki, J. Chem. Soc.,
Dalton Trans., 1993, 2557.
Conclusions
In conclusion, we have developed a straightforward synthesis of
a new non-macrocyclic ligand which forms very stable complexes
with Cu(II). The kinetics of Cu(II) complexation is fast and the
Cu(II) coordination is very selective for Cu(II) with respect to
Ni(II) and Zn(II), its neighbours in the d series. These coordination
properties thus represent a very promising approach for copper(II)
complexation with high potential within the frame of 64Cu
chelation for PET imaging and radiotherapy. Current efforts are
now directed toward a better understanding of the coordination
mode and the introduction of a labeling function for grafting on
biological targets.
Acknowledgements
This work was supported by the Centre National de la Recherche
Scientifique and the University of Strasbourg (UMR 7177 CNRS-
UdS and UMR 7178 CNRS-UdS). L.C. thanks the University
of Strasbourg for a grant of its scientific council. The Algerian
26 (a) V. Deluchat, J.-C. Bollinger, B. Serpaud and C. Caullet, Talanta,
1997, 44, 897; (b) K. Sawada, T. Araki, T. Suzuki and K. Doi, Inorg.
Chem., 1989, 28, 2687.
This journal is
The Royal Society of Chemistry 2010
Dalton Trans., 2010, 39, 9055–9062 | 9061
©