Crystal Growth & Design
ARTICLE
’ ACKNOWLEDGMENT
We gratefully acknowledge the financial support received from
the Department of Science and Technology, New Delhi, India
(to P.K.B.) and SRFs from the CSIR to P.L. We also would like to
thank Prof. Oleg Dolomanov for his help in finding the topology
and Prof. R. Butcher for giving his valuable suggestion while
solving crystal structures.
’ REFERENCES
(1) (a) Perry, J. J., IV; Perman, J. A.; Zaworotko, M. J. Chem. Soc. Rev.
2009, 38, 1400. (b) Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev.
2009, 38, 1294. (c) Farha, O. K.; Yazaydm, A. O.; Eryazici, I.; Malliakas,
C. D.; Hauser, B. G.; Kanatazidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp,
J. T. Nat. Chem. 2010, 2, 944. (d) Bradshaw, D.; Warren, J. E.; Rosseinsky,
M. J. Science 2007, 315, 977. (e) Sharma, M. K.; Senkovska, I.; Kaskel, S.;
Bharadwaj, P. K. Inorg. Chem. 2011, 50, 539. (f) Rajput, L.; Biradha, K. Cryst.
Growth Des. 2009, 9, 40. (g) Atwood, J. L.; Barbour, L. J.; Jerga, A. Angew.
Chem., Int. Ed. 2004, 43, 2948. (h) Janiak, C. Angew. Chem., Int. Ed. 1997,
36, 1431. (i) Jiang, H.-L.; Xu, Q. Chem. Commun. 2011, 3351. (j) Chen, B.;
Xiang, S.; Qian, G. Acc. Chem. Res. 2010, 43, 1115.
(2) (a) Das, M. C.; Bharadwaj, P. K. J. Am. Chem. Soc. 2009,
131, 10942. (b) Ma, L.; Falkowski, J. M.; Abney, C.; Lin, W. Nat. Chem.
2010, 2, 838. (c) Halder, G. J.; Kepert, C. J.; Moubaraki, B.; Murray, K. S.;
Cashion, J. D. Science 2002, 298, 1762. (d) Hurd, J. A.; Vaidhyanathan, R.
Thangadurai, V.; Ratcliffe, C. I.; Moudrakovski, I. L.; Shimizu, G. K. H.
Nat. Chem. 2009, 1, 705. (e) Sadakiyo, M.; Yamada, T.; Kitagawa, H.
J. Am. Chem. Soc. 2009, 131, 9906. (f) Navarro, J. A. R.; Barea, E.;
Rodriguez-Dieguez, A.; Salas, J. M.; Ania, C. O.; Parra, J. B.; Masciocchi,
N.; Galli, S.; Sironi, A. J. Am. Chem. Soc. 2008, 130, 3978. (g) Kim, H.;
Das, S.; Kim, M. G.; Dybtsev, D. N.; Kim, Y.; Kim, K. Inorg. Chem. 2011,
50, 3691.
(3) (a) Aijaz, A.; Lama, P.; Bharadwaj, P. K. Inorg. Chem. 2010,
49, 5883. (b) Ohmori, O.; Fujita, M. Chem. Commun. 2004, 1586.
(4) (a) Lama, P.; Aijaz, A.; Sa~nudo, E. C.; Bharadwaj, P. K. Cryst.
Growth Des. 2010, 10, 283. (b) Koh, K.; Wong-Foy, A. G.; Matzger, A. J.
Angew. Chem., Int. Ed. 2008, 47, 677. (c) Devic, T.; Serre, C.; Audebrand,
N.; Marrot, J.; Fꢀerey, G. J. Am. Chem. Soc. 2005, 127, 12788. (d)
Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.;
Yaghi, O. M. Science 2002, 295, 469.
(5) (a) Zhang, S.-M.; Chang, Z.; Hu, T.-L.; Bu, X.-H. Inorg. Chem.
2010, 49, 11581. (b) Zou, Y.; Hong, S.; Park, M.; Chun, H.; Lah, M. S.
Chem. Commun. 2007, 5182. (c) Dinca, M.; Dailly, A.; Liu, Y.; Brown,
C. M.; Neumann, D. A.; Long, J. R. J. Am. Chem. Soc. 2006, 128, 16876.
(6) (a) Wei, G.; Shen, Y.-F.; Li, Y.-R.; Huang, X.-C. Inorg. Chem.
2010, 49, 9191. (b) Su, C.-Y.; Goforth, A. M.; Smith, M. D.; Pellechia,
P. J.; zur Loye, H.-C. J. Am. Chem. Soc. 2004, 126, 3576.
Figure 8. Solid-state emission at room temperature.
investigated at room temperature and are shown in Figure 8.
Upon excitation at 340 nm, solid 1 exhibits strong luminescence
in the visible region centered at λmax = 415 nm. Compared with
the ligands, which have no luminescence, the greatly enhanced
photoluminescence intensities are attributed to the charge-
transfer transition between ligands and metal centers26 or
intraligand fluorescence emission because ligand coordination
to the metal center effectively increases the rigidity of the ligand
and reducing the loss of energy by radiation-less decay.27
Interestingly, the complexes show anion-dependent variation
in luminescence property and are thus attributable to metalÀ
ligand charge transfer transition. The Cd Cd distances are
3 3 3
long enough (more than 3.6 Å) to explain cluster-centered
transition caused by Cd Cd interaction in all the complexes.
3 3 3
Therefore, in addition to charge-transfer transition between
ligands and metal centers, there exists some mixing of halide-
to-metal charged transfer characters.
’ CONCLUSION
In summary, we have synthesized three isostructural 3D
coordination polymers with Cd2+ ions under hydrothermal
conditions using a new semiflexible in situ generated tetrazole
ligand. All the complexes display a rare μ3-halide bridging that is
extended in all dimensions to generate highly interpenetrated 3D
coordination polymers. They show interesting anion-dependent
luminescence property. Such type of cluster containing coordi-
nation polymers with other transition metal ions are under
investigation with this and other ligands containing both carboxy-
late and nitrogen donor groups in our laboratory.
(7) (a) Qiu, Y.; Deng, H.; Mou, J.; Yang, S.; Zeller, M.; Batten, S. R.;
Wu, H.; Li, J. Chem. Commun. 2009, 5415. (b) Zhao, H.; Qu, Z.-R.; Ye,
H.-Y.; Xiong, R.-G. Chem. Soc. Rev. 2008, 37, 84.
(8) Blake, J.; Champness, N. R.; Chung, S. S. M.; Li, W.-S.; Schroder,
M. Chem. Commun. 1997, 1675.
(9) (a) Chen, X.-M.; Tong, M.-L. Acc. Chem. Res. 2007, 40, 162. (b)
Zhang, X.-M. Coord. Chem. Rev. 2005, 249, 1201. (c) Tong, M.-L.; Li, L.-
J.; Mochizuki, K.; Chang, H.-C.; Chen, X.-M.; Li, Y.; Kitagawa, S. Chem.
Commun. 2003, 428.
’ ASSOCIATED CONTENT
(10) International Tables for X-Ray Crystallography; Kynoch Press:
Birmingham, England, 1952; Vol. III.
S
Supporting Information. Crystallographic data for L1
b
and 1À3 in CIF format, table for selected bonds and distances
for complexes 1À3, IR, TG analysis, ESI-MS, and NMR and
additional figures. This material is available free of charge via the
(11) SAINT, version 6.02; Bruker AXS: Madison, WI, 1999.
(12) Sheldrick, G. M. SADABS: Empirical Absorption Correction
Program; University of G€ottingen: G€ottingen, Germany, 1997.
(13) XPREP, version 5.1; Siemens Industrial Automation Inc.:
Madison, WI, 1995.
(14) Sheldrick, G. M. SHELXTL Reference Manual, version 5.1;
Bruker AXS: Madison, WI, 1997.
(15) Sheldrick, G. M. SHELXL-97: Program for Crystal Structure
Refinement; University of G€ottingen: G€ottingen, Germany, 1997.
’ AUTHOR INFORMATION
Corresponding Author
*Email: pkb@iitk.ac.in.
5439
dx.doi.org/10.1021/cg201028e |Cryst. Growth Des. 2011, 11, 5434–5440