COMMUNICATIONS
[
[
5] C. A. Bischoff, E. Frˆhlich, Chem. Ber. 1907, 40, 2779 ± 2790.
6] J. T. Adams, C. R. Hauser, J. Am. Chem. Soc. 1944, 66, 1220 ± 1222; R.
Levine, J. A. Conroy, J. T. Adams, C. R. Hauser, J. Am. Chem. Soc.
Natural Products Are Biologically Validated
Starting Points in Structural Space for
Compound Library Development: Solid-Phase
Synthesis of Dysidiolide-Derived Phosphatase
Inhibitors**
1
945, 67, 1510 ± 1512.
[
7] Mononuclear metallacoronates are generated with polyethylene
glycol spacered bis-1,3-diketones. See: Y. Kobuke, Y. Satoh, J. Am.
Chem. Soc. 1992, 114, 789 ± 790.
[
8] For double-stranded intertwined infinite linear silver coordination
networks based on bis-monodentate ligands with polyethylene glycol
spacer, see: B. Schmaltz, A. Jouaiti, M. W. Hosseini, A. De Cain,
Chem. Commun. 2001, 1242 ± 1243.
Dirk Brohm, Susanne Metzger, AjayBhargava,
Oliver M¸ller, Folker Lieb, and Herbert Waldmann*
[
9] Crystal data for K-3: C48
H
51Cu
2
KO16, M
r
1050.07; crystal dimensions
The combinatorial synthesis of compound libraries on
polymeric supports is at the heart of protein ligand and
inhibitor discovery, in particular in the development of new
drugs and chemical tools for the studyof biological processes.
To achieve high efficiencyin this process, powerful and
alternative strategies for the design of compound libraries are
of paramount importance. Herein, a structure-based approach
to this fundamental problem is outlined. The keyfeature is to
employthe structural frameworks of biologicallyactive
natural products, which are evolutionarilyselected for binding
to specific protein domains, as a guiding principle for library
development. Furthermore, it is demonstrated that the key
synthetic challenge posed by this approach, the multistep
solid-phase synthesis of natural products and their analogues,
can successfullybe met.
3
0
.25 Â 0.15 Â 0.15 mm ; monoclinic, space group C2/c, a 984.0(2),
3
b 2070.8(4), c 2475.0(5) pm, b 98.39(3)8, V 4989.0(17) ä ; Z
À3
4
; F(000) 2192, 1calcd 1.398 gcm . Diffractometer: Nonius Kap-
paCCD, MoKa radiation (l 0.71073 ä); T 173(2) K; graphite
monochromator; q range [8] 2.14 < q < 27.50; section of the reciprocal
lattice: À12 ꢀ h ꢀ 12, À26 ꢀ k ꢀ 26, À32 ꢀ l ꢀ 32; of 20042 measured
reflections, 5702 were independent and 4339 with I > 2s(I); linear
À1
absorption coefficient 1.004mm . The structure was solved bydirect
methods using SHELXS-97 and refinement with all data (321
parameters) byfull-matrix least-squares on F using SHELXL-97;
2
[10]
all non-hydrogen atoms were refined anisotropically; R1 0.0607 for
À3
I > 2s(I) and wR2 0.2074 (all data); largest peak (1.358 eä ) and
À3 [11]
hole (À0.788 eä ).
[
10] G. M. Sheldrick, C. Kr¸ger, P. Goddard, Crystallographic Computing
3
, Oxford UniversityPress, Oxford, 1985, p. 175; G. M. Sheldrick,
SHELXS-97, Program for Crystal Structure Solution, Universit‰t
Gˆttingen, 1997; G. M. Sheldrick, SHELXL-97, Program for Crystal
Structure Refinement, Universit‰t Gˆttingen, 1997.
Proteins can be regarded as modularlybuilt biomolecules
assembled from individual domains as building blocks. Since
the total number of all available protein domains appears to
[
11] Crystallographic data (excluding structure factors) for the structures
reported in this paper have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication nos.
[1]
CCDC-168265 (3, M K) and CCDC-168266 [(4)
n
]. Copies of the
be fairlylimited,
it has to be expected that in newly
data can be obtained free of charge on application to CCDC, 12 Union
Road, Cambridge CB21EZ, UK (fax: (44)1223-336-033; e-mail:
deposit@ccdc.cam.ac.uk).
discovered proteins with widelyvar yi ng function and activity
the same modules (i.e. domains) or close relatives will be
found repeatedlyin var yi ng combinations and arrangements
as structure- and function-determining entities. Thus, a keyto
the efficient discoveryof new ligands and inhibitors for known
and, in particular, for newlydiscovered proteins is to identify
compound classes alreadybiologicallyvalidated as being
[
12] L. Plasseraud, H. Maid, F. Hampel, R. W. Saalfrank, Chem. Eur. J.
2
001, 7, 4007 ± 4011; R. W. Saalfrank, H. Maid, F. Hampel, K. Peters,
Eur. J. Inorg. Chem. 1999, 1859 ± 1867.
[
[
13] R. W. Saalfrank, I. Bernt, F. Hampel, Chem. Eur. J. 2001, 7, 2770 ±
2
774.
14] M. Albrecht, S. Kotila, Angew. Chem. 1996, 108, 1299 ± 1300; Angew.
Chem. Int. Ed. Engl. 1996, 35, 1208 ± 1210; D. L. Caulder, K. N.
Raymond, J. Chem. Soc. Dalton Trans. 1999, 1185 ± 1200; R. W.
Saalfrank, V. Seitz, F. W. Heinemann, C. Gˆbel, R. Herbst-Irmer, J.
Chem. Soc. Dalton Trans. 2001, 599 ± 603
[
*] Prof. Dr. H. Waldmann, Dipl.-Chem. D. Brohm
Max-Planck-Institut f¸r Molekulare Physiologie
Abteilung Chemische Biologie
[
15] Crystal data for (4 ¥ 3HOMe)
n
: C51
H
60Cs
2
Ni
2
O
21, M
r
1392.24; crystal
3
Otto-Hahn-Stra˚e 11, 44227 Dortmund (Germany)
Fax : (49)231-133-2499
dimensions 0.40 Â 0.35 Â 0.35 mm ; monoclinic, space group P2(1)/n,
a 1767.67(5), b 1459.88(2), c 2271.77(3) pm, b 103.9790(10)8,
3
À3
E-mail: herbert.waldmann@mpi-dortmund.mpg.de
and
V 5688.88(13) ä ; Z 4; F(000) 2788, 1calcd 1.626 gcm . Dif-
fractometer: Nonius KappaCCD, MoKa radiation (l 0.71073 ä);
T 173(2) K; graphite monochromator; q range [8] 1.32 < q < 27.48;
section of the reciprocal lattice: À22 ꢀ h ꢀ 22, À18 ꢀ k ꢀ 14, À29 ꢀ
Universit‰t Dortmund, Fb. 3, Organische Chemie
Dipl.-Chem. D. Brohm
Semaia Pharmaceuticals GmbH & Co KG
Emil-Figge-Strasse 76 ± 80, 44227 Dortmund (Germany)
l ꢀ 29; of 19152 measured reflections, 12962 were independent and
À1
9
364 with I > 2s(I); linear absorption coefficient 1.997mm . The
structure was solved bydirect methods using SHELXS-97 and
Dr. S. Metzger
refinement with all data (685 parameters) byfull-matrix least-squares
Bayer AG, Pharma Forschung
PH-R LSC-NP, Geb. 6200, 40789 Monheim (Germany)
on F 2 using SHELXL-97;
[10]
all non-hydrogen atoms were refined
anisotropically; R1 0.0446 for I > 2s(I) and wR2 0.1396 (all data);
Dr. A. Bhargava
Bayer Corporation
À3
À3 [11]
largest peak (1.304 eä ) and hole (À1.607 eä ).
[
[
16] See: S. Y. Lai, T. W. Lin, Y. H. Chen, C. C. Wang, G. H. Lee, M. H.
Yang, M. K. Leung, S. M. Peng, J. Am. Chem. Soc. 1999, 121, 250 ± 251;
H. C. Chang, J. T. Li, C. C. Wang, T. W. Lin, H. C. Lee, G. H. Lee,
S. M. Peng, Eur. J. Inorg. Chem. 1999, 1243 ± 1251.
4
00 Morgan Lane, West Haven, CT 06525 (USA)
Dr. O. M¸ller
Max-Planck-Institut f¸r Molekulare Physiologie Dortmund
Abteilung Strukturelle Biologie
Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)
17] D. J. Eichorst, D. A. Payne, S. R. Wilson, K. E. Howard, Inorg. Chem.
1
990, 29, 1458 ± 1459; R. Fuchs, N. Habermann, P. Kl¸fers, Angew.
Dr. F. Lieb
Chem. 1993, 105, 895 ± 897; Angew. Chem. Int. Ed. Engl. 1993, 32,
Bayer AG, Zentrale Forschung und Entwicklung
ZF-LSC-SH, Geb. Q 18, 51368 Leverkusen (Germany)
8
1
52 ± 854; S. I. Troyanov, O. Yu. Gorbenko, A. A. Bosak, Polyhedron
999, 18, 3505 ± 3509.
[
18] The microanalytical data deviate from theory due to crystal solvents
and are not reported here.
[**] This research was supported bythe Fonds der Chemischen Industrie
and the Bayer AG.
Angew. Chem. Int. Ed. 2002, 41, No. 2
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
1433-7851/02/4102-0307 $ 17.50+.50/0
307