oxy derivative (BINOL-Piv) are efficient chiral auxiliaries or
precursors for the synthesis of non-C2-symmetric 1,1′-binaph-
thyls.4 Chemical modification of naphthyl units in these chiral
binaphthyls sometimes enhances the properties as chiral lig-
ands.2,3 In particular, 5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaph-
thyls (H8-binaphthyls, II) have recently received considerable
attention from organic chemists; they are more soluble and better
electron-donors than the corresponding binaphthyls.5
Highly Efficient Synthesis of Optically Pure
5,5′,6,6′,7,7′,8,8′-Octahydro-1,1′-bi-2-naphthol and
-naphthylamine Derivatives by Partial
Hydrogenation of 1,1′-Binaphthyls with Carbon
Nanofiber Supported Ruthenium Nanoparticles
Mikihiro Takasaki, Yukihiro Motoyama,* Seong-Ho Yoon,
Isao Mochida, and Hideo Nagashima
Graduate School of Engineering Sciences, Institute for Materials
Chemistry and Engineering, Kyushu UniVersity, Kasuga,
Fukuoka 816-8580, Japan
ReceiVed September 13, 2007
In the complexes containing a ligated metal center at the 2,2′-
positions, the H8-binaphthyls show larger bite angles than the
binaphthyls.6f,g These properties sometimes provide higher
asymmetric induction than the parent 1,1′-binaphthyls.5,6 As
typical examples, H8-binaphthyls are effective for alkylation of
aldehydes,6a,b hetero-Diels-Alder reaction of Danishefsky’s
diene,6c,d and hydrogenation of alkenes.6e-g Despite their
potential as better chiral auxiliaries, synthetic procedures for
H8-binaphthyls are problematic. Although partial hydrogenation
of 1,1′-binaphthyls with transition metal catalysts is a simple
method for the synthesis of H8-binaphthyls, the catalysts reported
in literature showed poor activity and sometimes formation of
an intermediary 5,6,7,8-tetrahydro-1,1′-binaphthyl (H4-binaph-
thyls) as a byproduct.2a,7 Moreover, the reactions were often
accompanied by racemization of the axial chirality.8 For
example, catalytic hydrogenation of BINOL to H8-BINOL over
Raney-Ni/Al alloy, Ru/C,7d or Pd/C7a,d requires a high substrate/
Use of Ru/CNF-P, nanoruthenium particles dispersed on a
nanocarbon fiber support, realizes highly efficient catalytic
partial hydrogenation of 1,1′-bi-2-naphthol and -naphthyl-
amine derivatives. The reactions proceed in high turnover
numbers without racemization of the axial chirality, offering
a practical procedure for the production of optically pure
5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyls in good to high
yields.
(4) (a) Maruoka, K.; Saito, S.; Yamamoto, H. J. Am. Chem. Soc. 1995,
117, 1165. (b) Ishihara, K.; Nakamura, S.; Kaneeda, M.; Yamamoto, H. J.
Am. Chem. Soc. 1996, 118, 12854. (c) Taniguchi, T.; Ogasawara, K.
Tetrahedron Lett. 1997, 38, 6429. (d) Yamada, Y. M. A.; Shibasaki, M.
Tetrahedron Lett. 1998, 39, 5561. (e) Hocke, H.; Uozumi, Y. Tetrahedron
2003, 59, 619.
Optically pure 1,1′-binaphthyls with C2-symmetry such as
1,1′-bi-2-naphthol(BINOL),2,2′-diamino-1,1′-binaphthyl(DABN),
2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP), and their
derivatives (I) have been widely used as chiral ligands for
catalytic asymmetric syntheses.1-3 It is also recognized that
monoprotected BINOL derivatives such as 2-hydroxy-2′-meth-
oxy-1,1′-binaphthyl (BINOL-Me) and 2-hydroxy-2′-(pivaloyl)-
(5) Review: Au-Yeung, T. T.-L.; Chan, S.-S.; Chan, A. S. C. AdV. Synth.
Catal. 2003, 345, 537 and references therein.
(6) Representative papers. H8-BINOL derivatives: (a) Chan, A. S. C.;
Zhang, F.-Y.; Yip, C.-W. J. Am. Chem. Soc. 1997, 119, 4080. (b) Lu, G.;
Li, X.; Chan, W. L.; Chan, A. S. C. Chem. Commun. 2002, 172. (c) Long,
J.; Hu, J.; Shen, X.; Ji, B.; Ding, K. J. Am. Chem. Soc. 2002, 124, 10. (d)
Wang, B.; Feng, X.; Huang, Y.; Liu, H.; Cui, X.; Jiang, Y. J. Org. Chem.
2002, 67, 2175. H8-DABN derivatives: (e) Zhang, F.-Y.; Pai, C.-C.; Chan,
A. S. C. J. Am. Chem. Soc. 1998, 120, 5808. H8-BINAP derivatives: (f)
Zhang, X.; Matsumura, K.; Koyano, K.; Sayo, N.; Kumobayashi, H.;
Akutagawa, S.; Takaya, H. J. Chem. Soc., Perkin Trans. 1 1994, 2309. (g)
Uemura, T.; Zhang, X.; Matsumura, K.; Sayo, N.; Kumobayashi, H.; Ohta,
T.; Nozaki, K.; Takaya, H. J. Org. Chem. 1996, 61, 5510. (h) Xiao, J.;
Nefkens, S. C. A.; Jessop, P. G.; Ikariya, T.; Noyori, R. Tetrahedron Lett.
1996, 37, 2813.
(7) Representative papers: (a) Zhang, X.; Mashima, K.; Koyano, K.;
Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Takaya, H. Tetrahedron Lett.
1991, 32, 7283. (b) Guo, H.; Ding, K. Tetrahedron Lett. 2000, 41, 10061.
(c) Shen, X.; Guo, H.; Ding, K. Tetrahedron: Asymmetry 2000, 11, 4321.
(d) Korostylev, A.; Tararov, V. I.; Fischer, C.; Monsees, A.; Bo¨rner, A. J.
Org. Chem. 2004, 69, 3220.
* Corresponding author. Tel. & Fax: +81-92-583-7821.
(1) Reviews: (a) Rosini, C.; Franzini, L.; Raffaelli, A.; Salvadori, P.
Synthesis 1992, 503. (b) Pu, L. Chem. ReV. 1998, 98, 2405. (c) McCarthy,
M.; Guiry, P. J. Tetrahedron 2001, 57, 3809. (d) Catalytic Asymmetric
Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: Weinheim, Germany, 2000,
and references therein.
(2) 2,2′-Dimethoxy- and 2,2′-di(methoxymethy)oxy-1,1′-binaphthyl are
well known as precursors for the 3,3′-disubstituted BINOL derivatives. (a)
Cram, D. J.; Helgeson, R. C.; Peacock, S. C.; Kaplan, L. J.; Domeier, L.
A.; Moreau, P.; Koga, K.; Mayer, J. M.; Chao, Y.; Siegel, M. G.; Hoffman,
D. H. G.; Sogah, D. Y. J. Org. Chem. 1978, 43, 1930. (b) Lingenfelter, D.
S.; Helgeson, R. C.; Cram, D. J. J. Org. Chem. 1981, 46, 393. (c) Maruoka,
K.; Itoh, T.; Araki, Y.; Shirasaka, T.; Yamamoto, H. Bull. Chem. Soc. Jpn.
1988, 61, 2975. (d) Simonsen, K. B.; Gothelf, K. V.; Jørgensen, K. A. J.
Org. Chem. 1998, 63, 7536. (e) Cox, P. J.; Wang, W.; Snieckus, V.
Tetrahedron Lett. 1992, 33, 2253.
(3) 6,6′-Disubstituted BINOL derivatives: (a) Mikami, K.; Motoyama,
Y.; Terada, M. Inorg. Chim. Acta 1994, 222, 71. (b) Sasai, H.; Tokunaga,
T.; Watanabe, S.; Suzuki, T.; Itoh, N.; Shibasaki, M. J. Org. Chem. 1995,
60, 7388. (c) Ueno, M.; Ishitani, H.; Kobayashi, S. Org. Lett. 2002, 4, 3395.
(d) Saruhashi, K.; Kobayashi, S. J. Am. Chem. Soc. 2006, 128, 11232.
(8) Both BINOL and H8-BINOL lose their optical rotations by heating
in alcohols over 100 °C (∼2%), and such partial racemization accelerates
under acidic or basic conditions (∼56%). Encyclopedia of Reagents for
Organic Synthesis; Paquette, L. A., Ed.; John Wiley & Sons: New York,
1995; Vol. 1, p 397. Also see ref 2a.
10.1021/jo702015j CCC: $37.00 © 2007 American Chemical Society
Published on Web 11/29/2007
J. Org. Chem. 2007, 72, 10291-10293
10291