Macromolecules
Article
feed MNP content, a different range of M could be achieved.
AUTHOR INFORMATION
s
■
This provides a big advantage in the application purpose of the
magnetic materials where the extent of magnetization holds a
vital key for the outcome of the experiment.
*
Notes
CONCLUSION
The authors declare no competing financial interest.
■
In this work we could successfully perform MEP of styrene
using imidazole based ILs as surfactants. Furthermore,
molecular weight and dispersity index of the polymer could
be controlled by employing RAFT mediated IL stabilized MEP.
Because of the availability of CTA with different functional
groups, one can obtain several kinds of internally functionalized
polymer particles through this approach. On the other hand,
the presence of IL at the surface of polymer particles can be
easily utilized through the ion exchange capability of IL that can
offer the possibility of dispersing the same polymer particle in
different solvents ranging from polar to nonpolar in nature.
Magnetic polymer particles were synthesized using IL
stabilized MEP employing first a free radical process, but high
content of MNP in the composite particles could not be
achieved due to increasing instability in the dispersion with
increasing MNP in the feed associated with the formation of a
high amount of coagulum. This problem was overcome using
RAFT mediated IL stabilized MEP. Different MNP contents
ranging from 8 to 27 wt % could be reached from 8 wt % feed
concentration, depending on the final monomer conversion,
with good to moderate colloidal stability. Considering the
advantages of a single step miniemulsion process, the RAFT
miniemulsion approach proved to be a promising method to
enhance the final MNP content in the composites. On the
other hand, different morphologies could be developed by
tuning the initiator to CTA mole ratio, but fully avoiding the
preparation of polystyrene particles lacking any MNP due to
the improved interactions of the MNP with carboxylic acid end
groups of the polystyrene chains prepared with the RAFT
mechanism. Combining several characterization techniques, the
colloidal stability, morphology, structural elucidation, and
composition of the materials were confirmed. As RAFT
chemistry employed here is quite compatible with the biological
system, a biocompatible monomer can well be utilized
according to this approach to prepare magnetic biocompatible
polymer nanoparticles for suitable biomedical applications.
Beside the above benefits of RAFT mediated MEP approach for
synthesizing PMC nanoparticles, a major drawback lies in the
low conversion of monomer in case of experiments consisting
of high feed MNP concentration which may restrict this
method in several applications, even though it has been shown
that this can be overcome by increasing the polymerization
time. Therefore, at present, we are further improving the
formation of PMC nanoparticles through the RAFT mediated
MEP approach.
ACKNOWLEDGMENTS
■
The authors acknowledge Petr Fomanek and Uta Reuter for
TEM, Maria Auf der Landwehr for SEM, Kerstin Arnhold for
TGA, and Petra Treppe for GPC analysis. We have been
grateful to Dr. Volker Neu of IFW Dresden (Germany) for
providing the VSM instrument for magnetic property measure-
̈
ment. S. Chakraborty thanks Dr. Jurgen Pionteck for important
advice in this work.
REFERENCES
■
(
1) Cheng, F.-Y.; Su, C.-H.; Yang, Y.-S.; Yeh, C.-S.; Tsai, C.-Y.; Wu,
C.-L.; Wu, M.-T.; Shieh, D.-B. Biomaterials 2005, 26, 729−738.
(
2) Elaïssari, A.; Rodrigue, M.; Meunier, F.; Herve, C. J. Magn. Magn.
Mater. 2001, 225, 127−133.
3) Akgol, S.; Kacar, Y.; Denizli, A.; Arıca, M. Y. Food Chem. 2001, 74
(3), 281−288.
(
̈
̧
(4) Gupta, P. K.; Hung, C. T. Life Sci. 1989, 44, 175−186.
(5) Langer, R. Science 1990, 249, 1527−1533.
6) Hancock, J. P.; Kemshead, J. T. J. Immunol. Methods 1993, 164,
(
5
(
2
(
8
(
1−60.
7) Yang, S.-M.; Kim, S.-H.; Lim, J.-M.; Yi, G.-R. J. Mater. Chem.
008, 18, 2177−2190.
8) Yoon, J.; Lee, K. J.; Lahann, J. J. Mater. Chem. 2011, 21, 8502−
510.
9) Ahmadi, A.; Williamson, B. H.; Theis, T. L.; Powers, S. E. J.
Cleaner Prod. 2003, 11, 573−582.
(10) Ding, S.; Xing, Y.; Radosz, M.; Shen, Y. Macromolecules 2006,
39, 6399−6405.
(11) Yuet, K. P.; Hwang, D. K.; Haghgooie, R.; Doyle, P. S. Langmuir
2
009, 26, 4281−4287.
12) Lattuada, M.; Hatton, T. A. J. Am. Chem. Soc. 2007, 129,
2878−12889.
13) Braconnot, S.; Eissa, M. M.; Elaissari, A. Colloid Polym. Sci. 2013,
91, 193−203.
14) Chen, K.; Zhu, Y.; Zhang, Y.; Li, L.; Lu, Y.; Guo, X.
Macromolecules 2011, 44, 632−639.
15) Ramírez, L. P.; Landfester, K. Macromol. Chem. Phys. 2003, 204,
(
1
(
2
(
(
22−31.
(16) Chen, Z.; Peng, K.; Mi, Y. J. Appl. Polym. Sci. 2007, 103, 3660−
3666.
(
17) Luo, Y.-D.; Dai, C.-A.; Chiu, W.-Y. J. Polym. Sci., Part A: Polym.
Chem. 2008, 46, 1014−1024.
18) Mahdavian, A. R.; Ashjari, M.; Mobarakeh, H. S. J. Appl. Polym.
Sci. 2008, 110, 1242−1249.
19) Qian, Z.; Zhang, Z.; Chen, Y. J. Colloid Interface Sci. 2008, 327,
(
(
3
(
54−361.
20) Ramos, J.; Forcada, J. Langmuir 2011, 27, 7222−7230.
21) Mori, Y.; Kawaguchi, H. Colloids Surf., B 2007, 56, 246−254.
22) Kaewsaneha, C.; Tangboriboonrat, P.; Polpanich, D.; Eissa, M.;
(
(
ASSOCIATED CONTENT
Supporting Information
■
*
S
Elaissari, A. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4779−4785.
(
(
23) Lu, S.; Ramos, J.; Forcada, J. Langmuir 2007, 23, 12893−12900.
24) Vanyur, R.; Biczok, L.; Miskolczy, Z. Colloids Surf., A 2007, 299,
NMR spectra of ILs, CTA and carboxyl functionalized PS,
comparative dispersion analysis of OA coated MNP in water
and toluene, SEM image of PS 3, TEM image of OA coated
MNP sticky particles of PMC 2, SEM images of PS
nanoparticles prepared by SDS/CTAB stabilized MEP and
comparative study between IL, SDS and CTAB regarding the
influence of surfactant to monomer ratio on average particle
́
́
2
56−261.
(
̌
25) Guerrero-Sanchez, C.; Erdmenger, T.; Sereda, P.; Wouters, D.;
Schubert, U. S. Chem.Eur. J. 2006, 12, 9036−9045.
(
(
26) Yan, F.; Texter, J. Chem. Commun. 2006, 2696−2698.
27) Costa, C.; Santos, V. H. S.; Dariva, C.; Santos, A. F.; Fortuny,
M.; Araujo, P. H. H.; Sayer, C. J. Appl. Polym. Sci. 2013, 127, 448−455.
(28) Huang, X.; Sudol, E. D.; Dimonie, V. L.; Anderson, C. D.; El-
Aasser, M. S. Macromolecules 2006, 39, 6944−6950.
L
dx.doi.org/10.1021/ma5008013 | Macromolecules XXXX, XXX, XXX−XXX