PGSE Diffusion NMR Spectroscopy and Ion Pairing in Lithium Salts
FULL PAPER
[
[
22] a) K. Hayamizu, Y. Aihara, S. Arai, C. G. Martinez, J. Phys. Chem.
B 1999, 103, 519; b) K. Hayamizu, E. Akiba, J. Chem. Phys. 2002,
[40] a) J. J. Brooks, G. D. Stucky, J. Am. Chem. Soc. 1972, 94, 7333;
b) M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 1985, 107, 2174;
c) R. A. Barlett, H. V. R. Dias, P. P. Power, J. Organomet. Chem.
1988, 341, 1.
[41] a) T. E. Hogen-Esch, Adv. Phys. Org. Chem. 1977, 15, 153; b) T. E.
Hogen-Esch, J. Smid, J. Am. Chem. Soc. 1966, 88, 318.
[42] W. Bauer, L. Lochmann, J. Am. Chem. Soc. 1992, 114, 7482.
[43] D. Seebach, R. Hꢈssig, J. Gabriel, Helv. Chim. Acta 1983 66, 308; S.
Berger; U. Fleischer, C. Geletneky, J. C. W. Lohrenz, Chem. Ber.
1995 128, 1183–1186.
1
17, 5929.
23] I. Fernꢀndez, E. Martꢁnez-Viviente, P. S. Pregosin, Inorg. Chem.
004, 43, 4555.
2
[
[
24] M. K. Wong, A. Popov, I. J. Inorg. Nucl. Chem. 1972, 34, 3615.
25] D. Barr, W. Clegg, R. E. Mulvey, R. Snaith, J. Chem. Soc. Chem.
Commun. 1984, 79.
[
[
26] F. E. Hahn, S. Rupprecht, Z. Naturforsch B 1991, 46, 143.
27] H. J. Reich, J. P. Borst, R. R. Dykstra, D. P. Green, J. Am. Chem.
Soc. 1993, 115, 8728.
[44] M. Tschoerner, P. W. Kunz, P. S. Pregosin, Magn. Reson. Chem.
[
[
28] H. Nçth, R. Waldçr, Z. Naturforsch B 1998, 53, 1525.
1
999, 37, 91; E. Martꢁnez-Viviente, P. S. Pregosin, M. Tschoerners,
7
29] The sensitivity of Li is not sufficient to allow measurements on the
Magn. Reson. Chem. 2000, 38, 23; M. Tschoerner, P. S. Pregosin,
Inorg. Chim. Acta 1999, 290, 95.
1
1
–2 mm solutions used in our H NMR diffusion studies. The existing
7
Li PGSE studies were made on 60 mm solutions. The literature
often reports concentrations of >100 mm.
[
45] Crystal structure of 2: single crystals were obtained from THF at
4
room temperature; C35H47LiO , orthorhombic, space group Pnn2; a
=
=
[
30] The hydrodynamic radii r
stein equation: D = (k T)/(6phr), in which D is the diffusion coeffi-
cient, k is the Boltzman constant, T is the temperature in Kelvin, h
H
were calculated from the Stokes–Ein-
3
11.469(1), b = 13.747(1), c = 10.093(1) ꢄ; V = 1591.3(1) ꢄ ; Z
ꢀ3
B
2; 1calcd = 1.124 Mgm ; crystal dimensions 0.92ꢃ0.65ꢃ0.55 mm;
B
diffractometer Bruker SMART Apex; MoKa radiation, 200 K, 2Vmax
49.428; 12619 reflections, 2700 independent (Rint 0.0611),
direct methods; refinement against full-matrix (versus F ) with
SHELXTL (ver. 6.12) and SHELXL-97, 184 parameters, R1
.0498 and wR2 (all data) = 0.1426 max./min residual electron den-
is the viscosity of the solution. It has been suggested that the factor
c (=6 in the equation) is not valid for small species whose van der
Waals radii are <5 ꢄ (J. T. Edward, J. Chem. Educ. 1970, 47, 261).
This factor can be adjusted by using a semiempirical approach (see:
H.-C. Chen, S.-H. Chen, J. Phys. Chem. 1984, 88, 5118; P. J. Espino-
sa, J. G. de la Torre, J. Phys. Chem. 1987, 91, 3612) derived from the
microfriction theory proposed by Wirtz and co-workers (A. Gierer,
K. Wirtz, Z. Naturforsch. A 1953, 8, 522; A. Spernol, K. Wirtz, Z.
Naturforsch. 1953, 8, 532), in which c is expressed as a function of
=
=
2
=
0
ꢀ3
sity 0.196/ꢀ0.194 eꢄ . The hydrogen atoms were placed in ideal-
ized positions and included as riding atoms. CCDC-247992 contains
the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallograph-
ic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. For fluore-
nyllithium: at 200 K: a = 9.236(2), b = 9.674(2), c = 17.239(3) ꢄ,
2
.234
the solute-to-solvent ratio of radii: c = 6/[1 + {0.695 (rsolv/r
To be consistent and facilitate comparisons we have used the
Stokes–Einstein equation as shown (c = 6), although we recognize
H
)
}].
3
a = 93.863(4), b = 103.927(5), g = 112.588(4)8, V = 1358 ꢄ .
[
46] Only one example of an unassociated alkyl lithium compound con-
taining a “free” pyramidal carbanion in solution and in the solid
state has been characterized so far: F. Breher, J. Grunenberg, S. C.
Lawrence, P. Mountford, H. Rꢆegger, Angew. Chem. 2004, 116,
that, for example, for the organic precursors such as HCPh
NH(SiMe , perhaps a smaller value would be better. For LiX in
THF at 299 K a correction (c = 5.3) is necessary.
3
or
3 2
)
[
[
31] C. L. Yaws, Chemical Properties Handbook, McGraw–Hill, New
York, 1999 (online: http//www.knovel.com).
32] A few per cent contribution from, for example, a 10 KHz Cl line
width, Dn1/2, due to a structure with strong ion pairing, would be suf-
ficient to account for the observed change in Dn1/2. Typical line
widths for covalently bound Cl are of the order of thousands of Hz,
2
575; Angew. Chem. Int. Ed. 2004, 43, 2521.
ꢀ
3
5
[47] Triphenylmethanide salts containing the “free” [Ph C] anion have
3
been reported in a) P. P. Power, Acc. Chem. Res. 1988, 21, 147;
b) J. S. Alexander, K. Ruhland-Senge, Angew. Chem. 2001, 113,
2
732; Angew. Chem. Int. Ed. 2001, 40, 2658; c) S. Harder, Chem.
Eur. J. 2002, 8, 3229, and references therein.
for example, 20 KHz for CCl
4
: see NMR and the Periodic Table
[
[
48] U. Pieper, D. Stalke, Organometallics 1993, 12, 1201.
49] a) H. Gornitzka, D. Stalke, Angew. Chem. 1994, 106, 695; Angew.
Chem. Int. Ed. Engl. 1994, 33, 693; b) H. Gornitzka, D. Stalke, Or-
ganometallics 1994, 13, 4398.
50] a) T. T. Hogen-Esch, J. Smid, J. Am. Chem. Soc. 1966, 88, 307;
b) H. W. Vos, C. MacLean, N. H. Velthorst, J. Chem. Soc. 1976, 72,
(Eds.: R. K. Harris, B. E. Man), Academic Press, London, 1978,
4
page 421; or 13 KHz for CCl dissolved in ether: see M. A. Fedotov,
O. L. Malkina, V. G. Malkin, Chem. Phys. Lett. 1996, 258, 330. The
presence of some ion pairing would not change the average volume
of the solvated salt very much.
[
[
33] The variation in D is probably due to a change in aggregation as
well as solvent viscosity. See: a) A. Chandra, B. Bagchi, J. Chem.
Phys. 2000, 113, 3226; b) H. Falkenhagen, Z. Phys. 1931, 32, 745.
34] W. H. Sikorski, H. J. Reich, J. Am. Chem. Soc. 2001, 123, 6527. We
noted that N,N’-dimethylpropylene urea (DMPU), as additive, is
preferable to HMPA on toxicity grounds: T. Mukhopadhyay, D. See-
bach, Helv. Chim. Acta 1982, 65, 385.
35] a) D. Barr, M. J. Doyle, R. E. Mulvey, P. R. Raithby, D. Reed, R.
Snaith, D. S. Wright, J. Chem. Soc. Chem. Commun. 1989, 318;
b) F. E. Romesburg, J. H. Gilchrist, A. T. Harrison, D. J. Fuller, D. B.
Collum, J. Am. Chem. Soc. 1991, 113, 5751.
36] D. Barr, W. Clegg, R. E. Mulvey, R. Snaith, J. Chem. Soc. Chem.
Commun. 1984, 226.
37] The rotational radius is the radius of the sphere determined by ro-
tating a molecular model or X-ray structure around its geometric
center: see: K. W. Mattison, U. Nobbmann, D. Dolak, American
Biotechnology Laboratory 2001, 19, 66.
6
3.
[
[
51] T. T. Hogen-Esch, J. Smid, J. Am. Chem. Soc. 1966, 88, 318.
52] a) U. Edlung, Org. Magn. Reson. 1979, 12, 661; b) D. Johnels, U.
Edlund, J. Am. Chem. Soc. 1990, 112, 1647; c) I. Sethson, B. Elias-
son, U. Edlund, Magn. Reson. Chem. 1991, 29, 1012.
53] D. Hoffmann, W. Bauer, P. von R. Schleyer, J. Chem. Soc. Chem.
Commun. 1990, 208.
[
[
[
[
54] a) J. J. Brooks, W. Rhine, G. D. Stucky, J. Am. Chem. Soc. 1972, 94,
7
339; b) M. Kçnemann, G. Erker, R. Frçhlich, E. U. Wꢆrthwein, J.
Am. Chem. Soc. 1997, 119, 11155; c) M. Hakasson, C. H. Ottosson,
A. Boman, D. Johnels, Organometallics 1998, 17, 1208; d) C. Uffing,
R. Kçppe, H. Schnçckel, Organometallics 1998, 17, 3512; e) S. Nean-
der, Kçrnich, F. Olbrich, J. Organomet. Chem. 2002, 656, 89.
[
[
[55] a) R. H. Cox, H. W. Terry, Jr., L. W. Harrison, J. Am. Chem. Soc.
1971, 93, 3297; b) D. H. OꢇBrien, C. R. Russel, A. J. Hart, J. Am.
Chem. Soc. 1979, 101, 633.
[
[
38] E. Buncel, B. Menon, J. Org. Chem. 1979, 44, 317.
39] a) V. R. Sandel, H. H. Freedam, J. Am. Chem. Soc. 1966, 88, 1272;
b) J. B. Grutzner, J. M. Lawlor, L. M. Jackman, J. Am. Chem. Soc.
[56] a) H. W. Vos, H. H. Blom, N. H. Velthorst, C. MacLean, J. Chem.
Soc. Perkin Trans. 2 1972, 635; b) H. W. Vos, C. MacLean, N. H.
Velthorst, J. Chem. Soc. Faraday Trans. 2 1976, 63.
1
972, 94, 2306; c) R. Waack, M. A. Doran, E. B. Baker, G. A. Olah,
[57] a) U. Edlund, Org. Magn. Reson. 1977, 9, 593; b) J. Giessen, C.
Goojier, C. MacLean, N. H. Velthorst, Chem. Phys. Lett. 1978, 55,
33; c) C. Gooijer, N. H. Velthorst, Org. Magn. Reson. 1979, 12, 1979;
J. Am. Chem. Soc. 1966, 88, 1272; d) D. H. OꢇBrien, C. R. Russell,
A. Hart, J. Am. Chem. Soc. 1979, 101, 633.
Chem. Eur. J. 2005, 11, 1495 – 1506
ꢂ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1505