6
462
L. S. Suwandi et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6459–6462
important factor in estrogenicity. Smaller substituents at position 3
in general were more estrogenic than larger substituents. All the ha-
lides (14a–c), 3-deoxy (21), thiol (10), and amine (18), for example,
had a SI value >1. Comparison of primary amine 18 and tertiary
amine 19 show that the smaller, unsubstituted amine is more estro-
genic. It seems that there is a steric constraint in the estrogen recep-
tor binding site, and the undesirable effect of estrogenicity can
thus be reduced by introducing a relatively bulky substituent.
These data indicate that by modification of the 3-position we
were able to enhance antitumor and antiangiogenic activity while
further reducing undesirable estrogenicity. The most active 3-posi-
tion analogs for antiproliferation are generally less estrogenic than
11, 6625; (b) Lakhani, N. J.; Sparreboom, A.; Xu, X.; Veenstra, T. D.; Venitz, J.;
Dahut, W. L.; Figg, W. D. J. Pharm. Sci. 2007, 96, 1821.
4
.
(a) Agoston, G. E.; Shah, J. H.; LaValle, T. M.; Zhan, X.; Pribluda, V. S.; Treston, A.
M. Bioorg. Med. Chem. 2007, 15, 7524; (b) Edsall, A. B.; Mohanakrishnan, A. K.;
Yang, D.; Fanwick, P. E.; Hamel, E.; Hanson, A. D.; Agoston, G. E.; Cushman, M. J.
Med. Chem. 2004, 47, 5126; (c) Cushman, M.; Mohanakrishnan, A. K.;
Hollingshead, M.; Hamel, E. J. Med. Chem. 2002, 45, 4748; (d) Cushman, M.;
He, H.-M.; Katzenellenbogen, J. A.; Varma, R. K.; Hamel, E.; Lin, C. M.; Ram, S.;
Sachdeva, Y. P. J. Med. Chem. 1997, 40, 2323; (e) Cushman, M.; He, H.-M.;
Katzenellenbogen, J. A.; Lin, C. M.; Hamel, E. J. Med. Chem. 1995, 38, 2041; (f)
Miller, T. A.; Bulman, A. L.; Thompson, C. D.; Garst, M. E.; Macdonald, T. L. J.
Med. Chem. 1997, 40, 3836; (g) Miller, T. A.; Bulman, A. L.; Thompson, C. D.;
Garst, M. E.; Macdonald, T. L. Biooorg. Med. Chem. Lett. 1997, 7, 1851; (h) Wang,
Z.; Yang, D.; Mohanakrishnan, A. K.; Fanwick, P. E.; Nampoothiri, P.; Hamel, E.;
Cushman, M. J. Med. Chem. 2000, 43, 2419; (i) Hughes, R. A.; Harris, T.; Altman,
E.; McCallister, D.; Vlahos, R.; Robertson, A.; Cushman, M.; Wang, Z.; Stewart, A.
G. Mol. Pharmacol. 2002, 61, 1053; (j) Rao, P. N.; Cessac, J. W.; Tinley, T. L.;
Mooberry, S. L. Steroids 2002, 67, 1079.
2
2
2
ME2. The fluoro analog (14c), with MCF7 SI of 2.13, was removed
from further consideration due to increased estrogenicity. Taking
into account the antitumor, antiproliferative, and estrogenic activ-
ities, there are several potential lead substituents for position 3
that warrant further investigation. They include aminonitrile 15,
urea 17, formamide 20a, carboxamide 12a, amino 18 and acetam-
ide 20b. Further work on these lead substituents is described in the
5
6
.
.
Shah, J. H.; Agoston, G. E.; Suwandi, L.; Zhan, X. H.; Swartz, G. M.; LaVallee, T.
M.; Pribluda, V. S.; Treston, A. M. Synthesis of 2- and 17-Substituted Estrone
Agoston, G. E.; Shah, J. H.; Suwandi, L.; Hanson, A. D.; Zhan, X.; LaVallee, T. M.;
Pribluda, V.; Treston, A. M. Bioorg. Med. Chem. Lett. 2009, 19, 6241.
6
accompanying Letter.
7. Hostetler, E. D.; Jonson, S. D.; Welch, M. J.; Katzenellenbogen, J. A. J. Org. Chem.
999, 64, 178.
1
In conclusion, 25 novel analogs of 2ME2 modified at the 3-posi-
tion have been synthesized and screened for their antiproliferative,
antiangiogenic, and estrogenic activities. Structure–activity rela-
tionships of these compounds led to the identification of several
lead substituents, which maintain the antitumor activity of 2ME2
while blocking the 3-position towards conjugation. The lead sub-
stituents reported here have been combined with 17-position ana-
8
9
.
.
Shi, Y.; Koh, J. T. J. Am. Chem. Soc. 2002, 124, 6921.
Li, P.-K.; Pillai, R.; Young, B. L.; Bender, W. H.; Martino, D. M.; Lin, F.-T. Steroids
1993, 58, 106.
0. Morera, E.; Ortar, G. Tetrahedron Lett. 1998, 39, 2835.
1. Wentland, M. P.; Lou, R.; Dehnhardt, C. M.; Duan, W.; Cohen, D. J.; Bidlack, J. M.
Bioorg. Med. Chem. Lett. 2001, 11, 1717.
12. Wolfe, J. P.; Ahman, J.; Sadighi, J. P.; Singer, R. P.; Buchwald, S. L. Tetrahedron
Lett. 1997, 38, 6367.
13. a Youngdale, G. A. World Patent 89/09224, 1989.; (b) Hecker, E. Chem. Ber.
1
1
5
logs reported separately, and activity and PK data are reported in
1962, 95, 977.
6
the accompanying paper. The results of these three studies led to
14. Morrow, D. F.; Hofer, R. M. J. Med. Chem. 1966, 9, 249.
5. Niwa, R.; Kamada, H.; Shitara, E.; Horiuchi, J.; Kibushi, N.; Kato, T. Chem. Pharm.
Bull. 1996, 44, 2314.
6. Kurzer, F.. In Organic Syntheses; Rabjohn, N., Ed.; John Wiley & Sons: NY, 1963;
Coll. Vol. IV, pp 49–54.
1
1
the identification of ENMD-1198, which is currently in a Phase 1
clinical trial for oncology.19
1
1
1
7. Pine, S. H.; Sanchez, B. L. J. Org. Chem. 1971, 36, 829.
8. Abdelaal, S. M.; Kong, S.-B.; Bauer, L. J. Heterocycl. Chem. 1992, 29, 1069.
9. LaVallee, T. M.; Burke, P. A.; Swartz, G. M.; Hamel, E.; Agoston, G. E.; Shah, J.;
Suwandi, L.; Hanson, A. D.; Fogler, W. E.; Sidor, C. F.; Treston, A. M. Mol. Cancer
Ther. 2008, 7, 1472.
References and notes
1
.
.
Pribluda, V. S.; Gubish, E. R.; LaVallee, T. M.; Treston, A.; Swartz, G. M.; Green, S.
J. Cancer Metastasis Rev. 2000, 19, 173.
Mabjeesh, N.; Escuin, D.; LaVallee, T. M.; Pribluda, V.; Swartz, G. M.; Johnson, M.
S.; Willard, M. T.; Hong, H.; Simons, J. W.; Giannakakou, P. Cancer Cell 2003, 3,
2
2
2
0. Kavallaris, M.; Kuo, D. Y.; Burkhart, C. A.; Regl, D. L.; Norris, M. D.; Haber, M.;
Horwitz, S. B. J. Clin. Invest. 1997, 100, 1282.
1. LaVallee, T. M.; Zhan, X. H.; Herbstritt, C. J.; Kough, E. C.; Green, S. J.; Pribluda,
V. S. Cancer Res. 2002, 62, 3691.
2. Tong, W.; Perkins, R.; Strelitz, R.; Collantes, E. R.; Keenan, S.; Welsh, W. J.;
Branham, W. S.; Sheehan, D. M. Environ. Health Perspect. 1997, 105, 1116.
2
3
63.
3
.
(a) Sweeney, C.; Liu, G.; Yiannoutsos, C.; Kolesar, J.; Horvath, D.; Staab, M. J.;
Fife, K.; Armstrong, V.; Treston, A.; Sidor, C.; Wilding, G. Clin. Cancer Res. 2005,