Journal of the American Chemical Society
Page 10 of 12
Asahi Glass Foundation. T. H. is grateful to the Japan Society
for the Promotion of Science (JSPS) for a Research Fellowship
for Young Scientists.
Scheme 4. Synthesis of prostane
1
2
3
REFERENCES
4
(1) For selected reviews on functionalization of sp3 hybridized
C–H bonds: (a) Zhang, Y.-H.; Shi, G.-F.; Yu, J.-Q. In Comprehen-
sive Organic Synthesis II, 2nd ed.; Knochel, P., Molander, G. A.,
Eds.; Elsevier: Amsterdam, 2014; Vol. 3, pp 1101-1209. (b) Godula,
K.; Sames, D. Science 2006, 312, 67. (c) Bergman, R. G. Nature
2007, 446, 391. (d) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013.
(e) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Bau-
doin, O. Chem. Eur. J. 2010, 16, 2654. (f) Newhouse, T.; Baran, P.
S. Angew. Chem., Int. Ed. 2011, 50, 3362. (g) Baudoin, O. Chem.
Soc. Rev. 2011, 40, 4902. (h) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev.
2012, 41, 5588. (i) Farmer, M. E.; Laforteza, B. N.; Yu, J.-Q. Bioorg.
Med. Chem. 2014, 22, 4445. (j) Yan, G.; Borah, A. J. Org. Chem.
Front. 2014, 1, 838. (k) Huang, Z.; Dong, G. Tetrahedron Lett.
2014, 55, 5869. (l) Qiu, G.; Wu, J. Org. Chem. Front. 2015, 2, 169.
(2) Representative examples of the transition-metal-catalyzed
direct functionalization of unreactive sp3-hydridized carbon–
hydrogen bonds. Site selectivity controlled mainly by sterics: (a)
Sakakura, T.; Sodeyama, T.; Sasaki, K.; Wada, K.; Tanaka, M. J.
Am. Chem. Soc. 1990, 112, 7221. Site selectivity controlled mainly
by electronics: (b) Lin, Y.; Ma, D.; Lu, X. Tetrahedron Lett. 1987,
28, 3249. Site selectivity controlled mainly by directing groups:
(c) Jones, W. D.; Kosar, W. P. J. Am. Chem. Soc. 1986, 108, 5640.
(d) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.
2005, 127, 13154. (e) Chan, K. S. L.; Wasa, M.; Chu, L.; Laforteza,
B. N.; Miura, M.; Yu, J.-Q. Nat. Chem. 2014, 6, 146. Site selectivi-
ty possibly controlled by combination of electronic and directing
effects: (f) Nugent, W. A.; Ovenall, D. W.; Holmes, S. J. Organo-
metallics 1983, 2, 161. (g) Dyker, G. Angew. Chem., Int. Ed. Engl.
1992, 31, 1023. (h) Jun, C.-H.; Hwang, D.-C.; Na, S.-J. Chem.
Commun. 1998, 1405. (i) Chatani, N.; Asaumi, T.; Ikeda, T.; Yori-
mitsu, S.; Ishii, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2000,
122, 12882.
(3) (a) Johnson, L.; K.; Killian, C. M.; Brookhart, M. J. Am.
Chem. Soc. 1995, 117, 6414. (b) Johnson, L. K.; Killian, C. M.;
Brookhart, M. J. Am. Chem. Soc. 1996, 118, 267. (c) Guan, Z.;
Cotts, P. M.; McCord, E. F.; McLain, S. J. Science 1999, 283, 2059.
(d) Okada, T.;Park, S.; Takeuchi, D.; Osakada, K. Angew. Chem.,
Int. Ed. 2007, 46, 6141. (e) Okada, T.; Takeuchi, D.; Shishido, A.;
Ikeda, T.; Osakada, K. J. Am. Chem. Soc. 2009, 131, 10852. (f)
Takeuchi, D. J. Am. Chem. Soc. 2011, 133, 11106. (g) Motokuni, K.;
Takeuchi, D.; Osakada, K. Macromolecules 2014, 47, 6522. (h)
Motokuni, K.; Takeuchi, D.; Osakada, K. Polym. Chem. 2015, 6,
1248. (i) Takeuchi, D.; Watanabe, K.; Sogo, K.; Osakada, K. Or-
ganometallics 2015, 34, 3007.
(4) (a) Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2005, 127, 8644.
(b) Renaudat, A.; Jean-Gérard, L.; Jazzar, R.; Kefalidis, C. E.; Clot,
E.; Baudoin, O. Angew. Chem., Int. Ed. 2010, 49, 7261. (c) Larini,
P.; Kefalidis, C. E.; Jazzar, R.; Renaudat, A.; Clot, E.; Baudoin, O.
Chem. Eur. J. 2012, 18, 1932. (d) Aspin, S.; Goutierre, A.-S.; Larini,
P.; Jazzar, R.; Baudoin, O. Angew. Chem., Int. Ed. 2012, 51, 10808.
(e) Curto, J. M.; Kozlowski, M. C. J. Am. Chem. Soc. 2015, 137, 18.
(5) For selected examples on long-distance alkene isomeriza-
tion, see: (a) Iranpoor, N.; Mottaghinejad, E. J. Organomet.
Chem. 1992, 423, 399. (b) Grotjahn, D. B.; Larsen, C. R.; Gus-
tafson, J. L.; Nair, R.; Sharma, A. J. Am. Chem. Soc. 2007, 129,
9592. (c) Chen, C.; Dugan, T. R.; Brennessel, W. W.; Weix, D. J.;
Holland, P. L. J. Am. Chem. Soc. 2014, 136, 945. (d) Larinov, E.;
Lin, L.; Guénée, L.; Mazet, C. J. Am. Chem. Soc. 2014, 136, 16882.
(6) Ozawa, F.; Kubo, A.; Hayashi, T. J. Am. Chem. Soc. 1991, 113,
1417.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Conclusions
We achieved the synthesis of small organic molecules
via catalytic carbon–carbon bond formation reactions that
involve a chain walking mechanism. Palladium-catalyzed
cycloisomerization was found to be applicable to various
1,n-dienes from 1,7- to 1,14-dienes using the chain-walking
mechanism to move the palladium center to the position
where the carbopalladation of the other alkene forms a
five-membered ring. The applicable substrates were not
limited to those having a cyclohexene ring, but a wide
variety of 1,n-dienes such as those containing (i) a cyclo-
pentene ring, (ii) an acyclic 1,2-disubsituted alkene, and
(iii) a trisubstituted alkenes. Chain walking over a tertiary
carbon was found to be possible in the cycloisomerization
reaction. A diene substrate with two alkene moieties
linked by a tertiary carbon can also be used as a substrate.
The results of a deuterium-labeling experiment provided
direct evidence that the reaction proceeds via a chain-
walking mechanism.
We believe the chain-walking strategy provides a new
route to the construction of carbon–carbon bonds as de-
scribed in Figure 1, and further extensions of this strategy
including more innovative cycloisomerization and com-
binations of the chain-walking cyclization with other
types of reactions are currently under way.
ASSOCIATED CONTENT
Supporting Information. Full experimental details and
characterization data. This material is available free of charge
AUTHOR INFORMATION
Corresponding Author
ACKNOWLEDGMENT
This work was supported, in part, by a Grant-in-Aid for Sci-
entific Research from the Ministry of Education, Culture,
Sports, Science and Technology, Japan, and grants from Keio
Leading-edge Laboratory of Science and Technology and the
ACS Paragon Plus Environment