C. Xi et al. / Tetrahedron Letters 46 (2005) 3909–3911
3911
H. C.; Hu, N.-H. J. Org. Chem. 1999, 64, 670–674; (c)
OꢀBrien, D. F.; Burrows, P. E.; Forrest, S. R.; Koene, B.
E.; Loy, D. E.; Thompson, M. E. Adv. Mater. 1998, 10,
1108–1112.
R1
CAN
R1
CAN
R2
R1
CAN
N
N
N
CAN
R2
R2
R
R
3
1
4
5. (a) Vettorazzi, N.; Fernandez, H.; Silber, J. J.; Sereno, L.
Electrochim. Acta 1990, 35, 1081–1088; (b) Mizoguchi, T.;
Adams, R. N. J. Am. Chem. Soc. 1962, 84, 2058–2061.
6. Carrick, W. L.; Karapinka, G. L.; Kwiatkowski, G. T.
J. Org. Chem. 1969, 34, 2388–2392.
R1
H
+ R1
CAN
N
N
N
CAN
R2
H
R2
5
´
´
7. Lopez-cortes, J. G.; Penieres-Carrillo, G.; Ortega-Alfaro,
´
´
M. C.; Gutierrez-Perez, R.; Toscano, R. A.; Alvarez-
Toledano, C. Can. J. Chem. 2000, 78, 1299–1304.
8. Periasamy, M.; Jayakumar, K. N.; Bharathi, P. J. Org.
Chem. 2000, 65, 3548–3550.
R1
R1
CAN
R2
CAN
R1
N
2H+
OH-
R2
6
9. Saitoh, T.; Yoshida, S.; Ichikawa, J. Org. Lett. 2004, 6,
4563–4565.
R1
N
N
10. (a) Li, C. J.; Chan, T. H. Organic Reactions in Aqueous
Media; John Wiley & Sons: New York, 1997; (b) Anastas,
P. T.; Warner, J. C. Green Chemsitry: Theory and Practice;
Oxford University Press: Oxford, 1998; (c) Lindstro¨m, U.
M. Chem. Rev. 2002, 102, 2751–2772; (d) Lubineau, A;
R2
R2
2
Scheme 3.
´
Auge, J. In Topics in Current Chemistry; Springer: Berlin,
Heidelberg, 1999; Vol. 206, p 1.
excluded the possibility that the radical intermediate 4
abstracts H from water, which would lead to a relatively
unstable ÆOH radical.
11. For reviews on CAN-mediated reactions see: (a) Ho, T. L
Synthesis 1973, 354–374; (b) Ho, T. L. Organic Synthesis
by Oxidation with Metal Compounds; Plenum: New
York, 1986; (c) Imamoto, T. Lanthanide Reagents in
Organic Synthesis; Academic: London, 1994, p 119; (d)
Nair, V.; Mathew, J.; Prabhakaran J. Chem. Soc. Rev.
1997, 127–132; (e) Hwu, J. R.; King, K.-Y. Curr. Sci.
2001, 8, 1043–1053; (f) Nair, V.; Panicker, S. B.; Nair, L.
G.; George, T. G.; Augustine, A. Synlett 2003, 156–165;
(g) Nair, V.; Balagopal, L.; Rajan, R.; Mathew, J. Acc.
Chem. Res. 2004, 37, 21–30.
In summary, a method using CAN as oxidant and water
as solvent for oxidative coupling of N,N-dialkylaryl-
amines was developed. This method has several advant-
ages, including easy handling, high efficiency, low cost,
and friendly to the environment. The synthetic applica-
tions of this reaction are currently under investigation.
12. Galliani, G.; Rindene, B.; Scolastico, C. Synth. Commun.
1975, 5, 319–323.
Acknowledgements
13. Representative procedure for the reaction of N,N-dialkyl-
arylamines. Oxidative coupling of N,N-diethylaniline. In
deionized H2O (3 mL), CAN (1.098 g, 2 mmol) and N,N-
diethylaniline (160 lL, 1 mmol) were added in turn at
room temperature. The reaction mixture was stirred for
2 h. The reaction mixture was quenched by aq K2CO3
solution and the organic residue was extracted with
CH2Cl2. The combined extract was dried over anhydrous
MgSO4. The solvent was removed and the residue was
chromatographed on an Al2O3 gel column. N,N,N0,N0-
Tetraethylbenzidine 2a8 was isolated (120 mg, 81%) as
white solid using 1:50 EtOAc/petroleum mixture as eluent.
1H NMR (CDCl3) d 7.40 (4H, d, J = 8.6 Hz), 6.71 (4H, d,
J = 8.6 Hz), 3.35 (8H, q, J = 7.2 Hz), 1.15 (12H, t,
J = 7.2 Hz); 13C NMR (CDCl3) d 146.2, 128.8, 127.0,
112.1, 44.4, 12.6; ESI-MS: 297(M+H+).
This work was supported by the National Natural
Science Foundation of China (20172032) (20372041).
References and notes
1. (a) Johnson, G. E.; McGrane, K. M.; Stolka, M. Pure
Appl. Chem. 1995, 67, 175–182; (b) Noda, T.; Ogawa, H.;
Noma, N.; Shirota, Y. J. Mater. Chem. 1999, 9, 2177–
2181.
2. Horowitz, G. Adv. Mater. 1998, 10, 365–377.
3. Cariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F.
Science 1992, 258, 1474–1476.
4. (a) Getautis, V.; Stanisauskaite, A.; Paliulis, O.; Uss, S.;
Uss, V. J. Prakt. Chem. 2000, 342, 58–62; (b) Goodbrand,