1
-Naphthyl Acetate Photo-Fries Rearrangement
J. Phys. Chem., Vol. 100, No. 11, 1996 4457
TABLE 3: Calculated and Experimental Values of Maxima
in the Absorption Spectra of 1-Naphthyl Acetate (λmax),
Experimental Values of the Absorption Coefficients at the
Maxima (E), and Calculated Values of Oscillator Strengths
It is seen from Table 4 that the calculated values of negative
H hfi constants are in good agreement with the corresponding
experimental values, with the positive values of the hfi constants
being overestimated. Both theoretical and experimental data
suggest that the hfi constant with hydrogen in position 4 is higher
than that in position 2. This is consistent with the data of Table
1
(f)
expt λmax (log ꢀ)
calc λmax (f)
3
2
13 (2.60)
80 (3.80)
304 (0.011)
274 (0.100)
5
, which show that the spin density on carbon in position 4 is
higher than that in position 2.
TABLE 4: INDO (UHF) Calculations and Experimental
Values for H hfi Constants (a, mT) in 1-Naphthoxyl Radical
H2 H3 H4 H5 H6 H7 H8
1
Acknowledgment. This work has been supported by Council
of High Education of Russia (project 94-9.5-111) and by Russian
Foundation for Fundamental Research (project 93-03-18593 and
project 95-03-08920).
calc
-0.89 0.53 -0.95 -0.38 0.28 -0.35 0.32
5
9
exp (abs val) 0.825 0.175 1.075 0.25 0.065 0.25 <0.04
References and Notes
TABLE 5: INDO (UHF) Calculation for Spin Density
Distribution in 1-Naphthoxyl
(
(
(
1) Anderson, J. C.; Reese, C. B. Proc. Chem. Soc. 1960, 217.
2) Bellus, D. AdV. Photochem. 1971, 8, 109 and references therein.
3) Shizuka, H.; Morita, T.; Mori, Y.; Tanaka, I. Bull. Chem. Soc. Jpn.
C2
.26
C3
C4
C5
C6
C7
C8
O
0
-0.07
0.28
-0.05
0.07
-0.04
0.07
0.53
1
969, 42, 1831.
4) Ohto, Y.; Shizuka, H.; Sekiguchi, S.; Matsui, K. Bull. Chem. Soc.
(
Jpn. 1974, 47, 1209. Crouse, D. J.; Hurlbut, S. L.; Wheeler, D. M. S. J.
Org. Chem. 1981, 46, 374. Evreinov, V. I.; Pivovarov, A. P. Russ. Zh. Fiz.
Khim. 1980, 55, 1901.
(5) Nakagaki, R.; Hiramatsu, M.; Watanabe, T.; Tanimoto, Y.; Na-
gakura, S. J. Phys. Chem. 1985, 89, 3222.
the acyl group in 1-naphthyl acetate is 9.6 kJ/mol. The MNDO
and PM3 calculations also give large angles of rotation of the
acyl group with respect to the ring plane (80° and 70°,
respectively). The AM1 calculation of the heat of C-O bond
dissociation gives 227 kJ/mol (compare with 186 kJ/mol for
PM3 and 212 kJ/mol for MNDO).
(
(
(
(
6) Elad, D. Tetrahedron Lett. 1963, 873.
7) Shizuka, H.; Tanaka, T. Bull. Chem. Soc. Jpn. 1968, 41, 2343.
8) Shizuka, H. Bull. Chem. Soc. Jpn. 1969, 42, 52.
9) Nozaki, H.; Okada, R.; Noyori, R.; Kawanisi, M. Tetrahedron 1966,
On the basis of the similarity of the 1-naphthyl acetate and
naphthalene spectra and the known positions of the lower triplet
2
2, 2177.
(
(
10) Miranda, P. M.; Factor, A. J. Polym. Sci. Part A 1989, 27, 4427.
11) Herweh, J. E.; Hoyle, C. E. J. Org. Chem. 1980, 45, 2195.
41
and singlet states of naphthalene, one can estimate the positions
of the lower singlet and triplet ππ* states of 1-naphthyl acetate,
which are 383 and 252 kJ/mol, respectively. From these data
and the heat of the bond dissociation we obtain the heat of the
(12) Lally, J. M.; Spillane, W. J. J. Chem. Soc., Chem. Commun. 1987,
-9. Lally, J. M.; Spillane, W. J. J. Chem. Soc., Perkin. Trans. 2 1991,
03-807.
8
8
(13) Subramanian, P.; Greed, D.; Griffin, A. C.; Hoyle, C. E.; Venka-
S
T
dissociation ∆H ) -156 kJ/mol in the singlet state and ∆H
-24.7 kJ/mol in the lowest triplet state.
It follows from our experimental data that the lowest triplet
taram, K. J. Photochem. Photobiol. A: Chem. 1991, 61, 317-327.
(14) Kobsa, H. J. Org. Chem. 1962, 27, 2293.
)
(
15) Anderson, J. C.; Reese, C. B. J. Chem. Soc. 1963, 1781.
(16) Adam, W.; de Sanabia, J. A.; Fischer, H. J. Org. Chem. 1972, 38,
state is nonreactive in the photo-Fries rearrangement. The small
contribution of the triplet channel to the photorearrangement
could be explained by the participation of the nπ* triplet state.
The results of the CNDO/S calculation58 of the absorption
spectrum of 1-naphthyl acetate are listed in Table 3.
2571.
(17) Vollenweider, J.-K.; Fischer, H. Chem. Phys. 1988, 124, 333.
Vollenweider, J.-K. Dissertation, Physikalisch-Chemisches Institut der
Universit a¨ t Z u¨ rich, 1987.
(18) Pinhey, J. T.; Schaffner, K. Aust. J. Chem. 1968, 21, 2265.
(19) Pohlers, G. P.; Grimme, S.; Dreeskamp, H. J. Photochem. Photobiol.
A: Chem. 1994, 79, 153.
The calculated spectrum fits well the experimental one (ππ*
states, Table 3). For the nπ* state the calculation gives λmax )
(
20) Schaffner, K. Pure Appl. Chem. 1967, 16, 75.
(21) Palm, W.-U.; Dreeskamp, H.; Bouas-Laurent, H.; Castellan, A. Ber.
2
99 nm. Hence, the ππ* singlet and triplet states are the lower
Bunsen-Ges. Physik. Chem. 1992, 96, 50.
22) Grimme, S. Chem. Phys. 1992, 163, 313.
(23) Kalmus, C. E.; Hercules, D. M. J. Am. Chem. Soc. 1974, 96, 449.
(
excited states of 1-naphthyl acetate. Assuming that the singlet-
4
1,42
3
-1
triplet splitting for the nπ* states3
is (2-4) × 10 cm , one
(
(
24) Arai., T.; Tobita, S.; Shizuka, H. Chem. Phys. Lett. 1994, 223, 521.
25) Stoughton, R. W. J. Am. Chem. Soc. 1935, 57, 202.
can estimate the position of the nπ* state, which is 327-352
kJ/mol. For the heat of the dissociation in this triplet state we
have ∆H ) -(100-126) kJ/mol.
(26) Carlson, S. A.; Hercules, D. M. Photochem. Photobiol. 1973, 17,
123.
27) Tsentalovich, Yu. P.; Fischer, H. J. Chem. Soc., Perkin Trans. 2
T
(
The reaction of radical recombination, yielding intermediate
adducts, is naturally an exothermic one. If adduct V is formed,
the AM1-calculated enthalpy of the reaction is -199 kJ/mol,
while the enthalpy of the formation of adduct VI is -191 kJ/
mol. The reactions of adducts V and IV to the final products
1
994, 729.
(28) Tsentalovich, Yu. P.; Yurkovskaya, A. V.; Sagdeev, R. Z.;
Obynochny, A. A.; Purtov, P. A.; Shargorodsky, A. A. Chem. Phys. 1989,
39, 307. Yurkovskaya, A. V.; Tsentalovich, Yu. P.; Lukzen, N. N.;
1
Sagdeev, R. Z. Res. Chem. Intermediates 1992, 17, 145. Tsentalovich, Yu.
P.; Yurkovskaya, A. V.; Sagdeev, R. Z. J. Photochem. Photobiol. A: Chem.
1993, 70, 9.
(
II and III) are also exothermic (∆H ) -53 and -41 kJ/mol,
(
29) Miller, R. J.; Closs, G. L. ReV. Sci. Instrum. 1981, 52, 1876.
respectively). However, the isomerization rate constants in-
(30) Engel, P. S. J. Am. Chem. Soc. 1970, 92, 6074. Robbins, W. K.;
crease essentially (by 5-6 orders of magnitude in proton-donor
Eastman, R. H. J. Am. Chem. Soc. 1970, 92, 6074.
solutions, e.g., in alcohols), which indicates that solvent protons
(31) Goez, M. Chem. Phys. Lett. 1990, 165, 11.
(32) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4899, 4907.
are involved in the reaction.24
(33) Dewar, M. J. S.; Zoebich, E. G.; Healy, E. F.; Stewart, J. J. P. J.
1
The spin density distributions and H hfi constants for the
Am. Chem. Soc. 1985, 107, 3902.
1
-naphthoxyl radical have been calculated (Tables 4 and 5).
(34) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209, 221.
(
35) Bliznyuk, A. A.; Voityuk, A. A. Zh. Struct. Khim. 1986, 27, N4,
90.
36) Fletcher, R.; Powell, M. J. D. Comput. J. 1963, 6, 163. Davidon,
W. C. Comput. J. 1968, 10, 406.
1
(
(
37) Voityuk, A. A. Zh. Struct. Khim. 1983, 24, N3, 18.
(38) Pople, J. A.; Beverige, D. L.; Dobosh, R. A. J. Chem. Phys. 1967,
4
7, 2026.