ORGANIC
LETTERS
2
009
Vol. 11, No. 6
389-1391
Unexpected De-Arylation of a Pentaaryl
Fullerene
1
Simon Clavaguera, Saeed I. Khan, and Yves Rubin*
Department of Chemistry and Biochemistry, UniVersity of California, Los Angeles,
California 90095-1569
Received February 2, 2009
ABSTRACT
A triphenylamine-derived pentaaryl fullerene undergoes an unusual oxidative dearylation under basic conditions to give tetraarylated epoxy
fullerene in high yield. The structure of the product was confirmed by single crystal X-ray diffraction. A mechanism is proposed to account
for the loss of the addend and the subsequent formation of the epoxide group.
We have been studying novel approaches to promote greater
control over the morphology of the bicontinuous conducting
polymer-fullerene network in bulk heterojunction photovol-
Pentafunctionalized fullerenes are interesting targets be-
cause their molecular structure (badminton shuttlecock-
shaped) can promote self-assembly into one-dimensional
1
1,6
taic devices. In the course of our syntheses of a series of
stacks. They are formed by the highly regioselective and
pentaarylated fullerene derivatives (shuttlecocks) inspired
from Nakamura’s work, we encountered the unexpected
efficient addition of organocopper reagents, prepared by
transmetalation between a Grignard reagent and CuBr·SMe ,
2
2
dearylation reaction of pentaadduct 1 bearing five tripheny-
lamine addends, which afforded epoxy tetraaryl fullerene 2.
While this tetraadduct epoxide pattern is commonly encoun-
to the fullerene C60. Additionally, electron-donating aromatic
addends such as triphenylamine (TPA) have been widely
used in molecular dyads and triads involving C60 to form
light energy harvesting systems or molecular electronic
3
,4
tered in secondary amine and peroxide additions to C60
,
7
,8
devices.
this is the first time that such an adduct is formed by
5
The initial goal of this work was to investigate the
influence of a hole transport molecule on the photovoltaic
properties of a pentafunctionalized fullerene. It has been
oxidative loss of one addend from a pentaadduct.
(
1) Kennedy, R. D.; Ayzner, A. L.; Wanger, D. D.; Day, C. T; Halim,
M.; Khan, S. I.; Tolbert, S.; Schwarz, B.; Rubin, Y. J. Am. Chem. Soc.
008, 130, 17290–17292.
2) Sawamura, M.; Kawai, K.; Matsuo, Y.; Kanie, K.; Kato, T.;
Nakamura, E. Nature 2002, 419, 702–705.
3) (a) Isobe, H.; Nakanishi, W.; Tomita, N.; Jinno, S.; Okayama, H.;
2
(5) For a recent study of a related phenylcarbazole adduct, see: (a) Zhang,
(
X.; Matsuo, Y.; Nakamura, E. Org. Lett. 2008, 10, 4145–4147.
(6) Matsuo, Y.; Nakamura, E. Chem. ReV. 2008, 108, 3016–3028
.
(
(7) (a) Williams, R. M.; Zwier, J. M.; Verhoeven, J. W. J. Am. Chem.
Soc. 1995, 117, 4093–4099. (b) Martin, N.; Sanchez, L.; Illescas, B.; Perez,
Nakamura, E Chem.-Asian. J. 2006, 1-2, 167–175. (b) Isobe, H.; Tanaka,
T.; Nakanishi, W.; Lemi e` gre, L.; Nakamura, E. J. Org. Chem. 2005, 70,
I. Chem. ReV. 1998, 98, 2527–2548
.
4
3
826–4832. (c) Isobe, H.; Tomita, N.; Nakamura, Org. Lett. 2000, 2, 3663–
(8) (a) Komamine, S.; Fujitsuka, M.; Ito, O.; Moriwaki, K.; Miyata, T.;
Ohno, T. J. Phys. Chem A. 2000, 104, 11497–11504. (b) Han, Y.; Dobeck,
L.; Gong, A.; Meng, F.; Spangler, C. W.; Spangler, L. H. Chem. Commun.
2005, 1067–1069. (c) Zeng, H. P.; Wang, T.; Sandanayaka, A. S. D.; Araki,
Y.; Ito, O. J. Phys. Chem. A 2005, 109, 4713–4720. (d) El-Khouly, M. E.;
Kim, J. H.; Kwak, M.; Choi, C. S.; Ito, O.; Kay, K-Y. Bull. Chem. Soc.
665. (d) Lemi e` gre, L.; Tanaka, T.; Nanao, T.; Isobe, H.; Nakamura, E.
Chem. Lett. 2007, 36, 20–21
.
(
4) (a) Jia, Z.; Zhang, X.; Zhang, G.; Huang, S.; Fang, H.; Hu, X.; Li,
Y.; Gan, L.; Zhang, S.; Zhu, D Chem.-Asian J. 2007, 2, 290–300. (b) Hu,
X.; Jiang, Z.; Jia, Z.; Huang, S.; Yang, X.; Li, Y.; Gan, L.; Zhang, S.; Zhu,
D. Chem.-Eur. J. 2007, 13, 1129–1141
.
Jpn. 2007, 80, 2465–2472.
10.1021/ol900224w CCC: $40.75 2009 American Chemical Society
Published on Web 02/26/2009