if so there must be a further factor contributing to the differ-
ence in the rate constants. As the entropy of activation per C–
3
4
5
6
7
8
9
R. R. Baker, R. R. Baldwin and R. W. Walker, T rans. Faraday
Soc., 1970, 66, 2812, 3016.
S. M. Handford-Styring and R. W. Walker, J. Chem. Soc.,
Faraday T rans., 1995, 91, 1431.
G. M. Atri, R. R. Baldwin, G. A. Evans and R. W. Walker, J.
Chem. Soc., Faraday T rans. 1, 1978, 74, 366.
R. R. Baldwin, M. W. M. Hisham, A. Keen and R. W. Walker, J.
Chem. Soc., Faraday T rans. 1, 1982, 78, 1165.
R. R. Baldwin, P. N. Jones and R. W. Walker, J. Chem. Soc.,
Faraday T rans. 2, 1988, 84, 199.
H bond for HO
significantly, the congruity of the rate constants per CH group
2 5 6
attack on c-C H10 and c-C H12 will not differ
2
is predictable. The higher rate constant for the secondary CH
group in C H probably therefore arises at least partially from
2
3
8
a lower (negative) value for the entropy of activation. The
precise difference is difficult to estimate, but lies in the region
À1
À1
of 4–8 J K mol , which implies that HO
site in C H would be a factor 1.5–2.5 faster than for c-C H
2
attack at the CH
2
R. R. Baldwin, C. E. Dean, M. R. Honeyman and R. W. Walker,
J. Chem. Soc., Faraday T rans.1, 1986, 82, 89.
R. R. Baldwin, P. Doran and R. W. Walker, T rans. Faraday Soc.,
1960, 56, 93.
3
8
5
10
6
and c-C H12 , compared with the figure of 1.45 observed
experimentally. Further discussion at this stage is premature in
the absence of more experimental data.
Based on the Arrhenius expression, values of A(per C–H
10 G. A. Evans and R. W. Walker, J. Chem. Soc., Faraday T rans. 1,
979, 75, 1458.
11 Z. H. Lodhi and R. W. Walker, J. Chem. Soc., Faraday T rans.,
991, 87, 681.
Z. H. Lodhi and R. W. Walker, J. Chem. Soc., Faraday T rans.,
991, 87, 2361.
1
9
3
À1 À1
À1
bond) ¼ 3.0 Â 10 dm mol
s
recommended for HO attack at the CH groups in C H and
and E ¼ 75 kJ mol are
1
2
2
3
8
1
2
4
C H10 between 650 and 800 K, with A(per C–H bond) reduced
1
9
3
À1 À1
s for alkanes where the carbon number
exceeds 4. Outside this temperature range use of the expression
to 1.5 Â 10 dm mol
13 D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th.
Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker and J.
Warnatz, J. Phys. Chem. Ref. Data, 1992, 21, 411.
2
.5
k ¼ AT exp(À B=T ) is preferred, given the clear evidence of
1
4
R. R. Baldwin, D. Jackson, R. W. Walker and S. J. Webster,
T rans. Faraday Soc., 1967, 63, 1676.
R. R. Baldwin, R. W. Walker and Robert W. Walker, J. Chem.
Soc., Faraday T rans. 1, 1979, 75, 1447.
non-Arrhenius behaviour over large temperature ranges for
many radical reactions, the value of
k ¼ 4.1 Â
1
5
1
2.5
3
À1 À1
s determined experimen-
1
tally over the range 540–1600 K for HO
0 T exp(À 5136=T ) dm mol
2
4
2
þ HCHO, and
16 F. Westley, J. T. Herron and R. J. Cvetanovic, Compilation of
Chemical Kinetic Data for Combustion Chemistry, Part 1, NSRDS-
NBS 73, NBS, Washington, DC, August 1987.
2
application of Bozzelli’s methods which suggests that n lies
5
between 2.2 and 3.0. Table 8 summarises all the available data in
1
7
Handbook of Bimolecular and Termolecular Gas Reactions, ed J. A.
Kerr and S. J. Moss, CRC Press, Boca Raton, FL, vol. 1.
R. R. Baldwin and R. W. Walker, J. Chem. Soc., Faraday T rans. 1,
this form. The values of B fall consistently as the HO
approach approximate thermoneutrality (HO
þ HCHO). The
non-Arrhenius A factors per C–H bond fall in the range 6.5–25
2
reactions
2
1
8
1
979, 75, 140.
3
À1 À1
À2.5
and, although perhaps fortuitously, are
view that in abstractions by radicals
dm mol
s
K
consistent with Cohen’s
19 N. Cohen, Int. J. Chem. Kinet., 1991, 23, 683.
20 N. Cohen, Int. J. Chem. Kinet., 1991, 23, 397.
1
9,20
2
2
1
2
R. Atkinson, J. Phys. Chem. Ref. Data, 1997, 26, 217.
CRC Handbook of Chemistry and Physics, ed D. R. Lide, CRC
Press, Boca Raton, FL, 1998, pp. 9–64.
such as H and OH the entropy of activation per C–H bond does
not become constant until the alkane has a carbon number
exceeding 4. The accuracy of the rate constants in the database
may be expressed in the form Dlog k ¼ ± 0.15 between 600 and
2
3
D. F. McMillen and D. M. Golden, Ann. Rev. Phys. Chem., 1982,
3, 493.
3
8
00 K rising to ± 0.3 at 1200 K.
24 B. Eiteneer, C-L. Yu, M. Goldenberg and M. Frenklach, J. Phys.
Chem. A, 1998, 102, 5196.
2
5
C-J. Chen and J. W. Bozzelli, J. Phys. Chem. A, 2000, 104,
9715.
References
2
6
R. R. Baker, R. R. Baldwin and R. W. Walker, Proc. Combust.
Inst., 1971, 13, 291.
1
2
S. M. Handford-Styring and R. W. Walker, Phys. Chem. Chem.
Phys., 2001, 3, 2043.
S. W. Benson, T hermochemical Kinetics, Wiley, New York, 1976.
27 R. R . Baldwin, G. R. Drewery and R. W. Walker, J. Chem. Soc.,
Faraday T rans. 2, 1986, 82, 251.
Phys. Chem. Chem. Phys., 2002, 4, 620–627
627