J. Mondal et al. / Journal of Molecular Catalysis A: Chemical 363–364 (2012) 254–264
263
catalytic reaction, as higher surface area helps favorable diffusion
and thus facilitates the reaction. Due to the larger surface area of
AFS-2 there is favorable diffusion of organic molecules in the pore
channels and as a result the rate of the catalytic reaction is quite
high for AFS-2 compared to that of AFS-1. Thus due to higher sur-
face area and stronger acidity the reaction becomes quite facile over
SO3H functionalized material AFS-2.
It can be observed that the SO3H functionalized organocatalyst
ble loss of activity.
[9] W. Notz, F. Tanaka, C.F. Barbas, Acc. Chem. Res. 37 (2004) 580–591.
[10] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992)
710–712.
[11] S. Samanta, N.K. Mal, A. Manna, A. Bhaumik, Catal. Appl. A. Gen. 273 (2004)
157–161.
[12] H. Kim, J.C. Jung, I.K. Song, Catal. Surv. Asia 11 (2007) 114–122.
[13] Y. Shi, Y. Wan, D. Zhao, Chem. Soc. Rev. 40 (2011) 3854–3878.
[14] N. Mizoshita, T. Tani, S. Inagaki, Chem. Soc. Rev. 40 (2011) 789–800.
[15] K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, J.P. Hill, Bull. Chem. Soc. Jpn. 85 (2012) 1–32.
[16] S. Shylesh, Z. Zhou, Q.G. Meng, A. Wagener, A. Seifert, S. Ernst, W.R. Thiel, J. Mol.
Catal. A: Chem. 332 (2010) 65–69.
[17] K. Sarkar, M. Nandi, M. Islam, T. Mubarak, A. Bhaumik, Appl. Catal. A: Gen. 352
(2009) 81–86.
[18] Y. Kubota, H. Yamaguchi, T. Yamada, S. Inagaki, Y. Sugi, T. Tatsumi, Top. Catal.
53 (2010) 492–499.
[19] K. Dhara, K. Sarkar, D. Srimani, S.K. Saha, P. Chattopadhyay, A. Bhaumik, Dalton
Trans. 39 (2010) 6395–6402.
[20] P.J.E. Harlick, A. Sayari, Ind. Eng. Chem. Res. 46 (2007) 446–458.
[21] K. Yamamoto, T. Tatsumi, Chem. Mater. 20 (2008) 972–980.
[22] H. Yoshitake, T. Yokoi, T. Tatsumi, Chem. Mater. 14 (2002) 4603–4610.
[23] K. Sarkar, K. Dhara, M. Nandi, P. Roy, A. Bhaumik, P. Banerjee, Adv. Funct. Mater.
19 (2009) 223–234.
[24] A.B. Descalzo, K. Rurack, H. Weisshoff, R. Manez, M. Dolores, P. Amoros, K.
Hoffmann, J. Sato, J. Am. Chem. Soc. 127 (2005) 184–200.
[25] S.L. Jain, A. Modak, A. Bhaumik, Green Chem. 13 (2011) 586–590.
[26] W. Hong, L. Lei, Z. Shiyun, L. Yahong, C. Weimin, Curr. Microbiol. 52 (2006) 1–5.
[27] H.N. Hafez, M.I. Hegab, I.S. Ahmed-Farag, A.B.A. El-Gazzar, Bioorg. Med. Chem.
Lett. 18 (2008) 4538–4543.
[28] R.M. Ion, D. Frackowiak, A. Planner, K. Wiktorowicz, Acta Biochim. Pol. 45 (1998)
833–845.
[29] M. Bass, T.F. Deutsch, M.J. Weber, Appl. Phys. Lett. 13 (1968) 120–124.
[30] D. Quintas, A. Garcia, D. Dominguez, Tetrahedron Lett. 44 (2003) 9291–9294.
[31] D.W. Knight, P.B. Little, Synlett (1998) 1141–1143.
Plausible reaction pathway for the condensation reaction over
CO2H functionalized SBA-15, as a representative case, is shown
in Fig. 6. The acid functionalized organocatalyst acts as a protonic
acid which increases the electrophilicity of the carbonyl carbon of
A. A on further reaction with another molecule of 2-naphthol in the
presence of the acid catalyst forms B, which undergoes cyclization
with the elimination of water molecule to give the xanthene deriva-
tive [43,44]. A similar mechanism can be expected to be operating
in case of the SO3H functionalized AFS-2 catalyst. Since the acid
groups present at the surface of the porous materials plays cru-
cial role, so the reaction over SO3H functionalized MCM-41 with
stronger acidic sites, proceeds more rapidly than CO2H function-
alized SBA-15.
[32] A. Jha, J. Beal, Tetrahedron Lett. 45 (2004) 8999–9001.
[33] J.A. Van Allan, D.D. Giannini, T.H. Whitesides, J. Org. Chem. 47 (1982) 820–823.
[34] M. Dabiri, M. Baghbanzadeh, M.S. Nikcheh, E. Arzroomchilar, Bioorg. Med.
Chem. Lett. 18 (2008) 436–438.
[35] B. Das, B. Ravikanth, R. Ramu, K. Laxminarayan, B.V. Rao, J. Mol. Catal. A: Chem.
255 (2006) 74–77.
[36] M. Nandi, J. Mondal, K. Sarkar, Y. Yamauchi, A. Bhaumik, Chem. Commun. 47
(2011) 6677–6679.
[37] S. Saravanamurugan, Sujandi, E.A. Prasetyanto, S.E. Park, Micropor. Mesopor.
Mater. 112 (2008) 97–107.
[38] M.H. Lim, A. Stein, Chem. Mater. 11 (1999) 3285–3295.
680–682.
[40] F. Gao, Y.H. Zhang, H.Q. Wan, Y. Kong, X.C. Wu, L. Dong, B. Li, Y. Chen, Micropor.
Mesopor. Mater. 110 (2008) 508–516.
4. Conclusions
In conclusion, we have developed two metal-free acid cata-
lysts based on mesoporous silica SBA-15 and MCM-41. The CO2H
functionalized SBA-15 has been prepared via Schiff-base conden-
sation of 3-aminopropyl grafted SBA-15 with 4-formyl benzoic
acid, whereas the SO3H functionalized catalyst has been syn-
thesized via in situ incorporation of mercaptopropyl group into
mesoporous silica, MCM-41, followed by the oxidation of SH
to SO3H. Both these materials are highly ordered 2D-hexagonal
structure, mesoporosity and retained the organic functionalities at
their surfaces. These materials can be used for the condensation
reaction of aromatic aldehyde and 2-naphthol for the synthesis of
various xanthene derivatives in good yield, under mild conditions
in the presence or absence of solvents. These catalytic reactions
proceed in the absence of any other external metal co-catalyst and
hence they are designated as environmentally benign organocat-
alytic pathways. Both these organocatalysts can be recovered easily
after each catalytic cycle and show high recycling efficiency, which
makes them highly attractive for their potential use in large scale
synthesis of value added organic fine chemicals.
[41] X. Wang, S. Cheng, J.C.C. Chan, J. Phys. Chem. C 111 (2007) 2156–2164.
[42] 1H and 13C NMR chemical shifts for different xanthene derivatives reported in
Table 1. 14-(Phenyl)-14H-dibenzo [a, j] xanthene (Table 1, entry 1): 1H NMR
(300 MHz, DMSO-d6) ı 8.69 (2H, d, J = 9Hz), 7.93 (4H, d, J = 9 Hz), 7.64 (6H, m),
7.47 (2H, t), 7.16 (2H, t), 6.98 (1H, t), 6.71 (1H, s); 13C NMR (300 MHz, DMSO-
d6) ı 147.9, 145.4, 130.8, 130.6, 128.9, 128.5, 128.3, 127.9, 126.8, 126.1, 124.4,
123.4, 117.6, 117.3, 36.5; EIMS, 70 Ev, m/z: 358.32 (M+). 14-(4-Bromophenyl)-
14H-dibenzo [a, j] xanthene (Table 1, entry 2): 1H NMR (300 MHz, DMSO-d6)
ı 8.65 (2H, d, J = 9 Hz), 7.94 (4H, d, J = 9 Hz), 7.64–7.53 (6H, m), 7.48 (2H, t), 7.34
(2H, d, J = 9 Hz), 6.72 (1H, s); 13C NMR (300 MHz, DMSO-d6) ı 147.8, 144.8, 131.2,
130.7, 130.6, 130.0, 129.2, 128.5, 126.9, 124.5, 123.3, 119.4, 116.8, 38.6; EIMS,
(Table 1, entry 3): 1H NMR (300 MHz, DMSO-d6) ı 9.69 (1H, s), 8.43 (1H, d,
J = 9 Hz), 7.57 (1H, d, J = 9 Hz), 7.49–7.42 (7H, m), 7.27–7.19 (5H, t), 6.94 (1H,
d, J = 6 Hz), 6.69 (1H, d, J = 9 Hz), 6.45 (1H, s); 13C NMR (300 MHz, DMSO-d6) ı
154.2, 149.2, 137.9, 131.9, 131.4, 129.9, 129.3, 129.2, 127.6, 124.6, 123.3, 118.4,
117.6, 115.8, 37.5; EIMS, 70 Ev, m/z: 374.34 (M+). 14-(4-Methylphenyl)-14H-
dibenzo [a, j] xanthene (Table 1, entry 4): 1H NMR (300 MHz, CDCl3) ı 8.44
(2H, d, J = 9 Hz), 7.86–7.79 (4H, m), 7.64–7.58 (8H, m), 7.00 (2H, d, J = 9 Hz), 6.48
(1H, s), 2.1 (3H, s); 13C NMR (300 MHz, CDCl3) ı 148.7, 142.2, 135.9, 131.5, 131.1,
129.2, 128.8, 128.1, 126.8, 124.2, 122.7, 118.0, 117.5, 37.7, 20.9; EIMS, 70 Ev,
entry 5): 1H NMR (300 MHz, CDCl3) ı 6.51(s, 1H), 6.72–8.35 (m, 16H); 13C NMR
(75 Hz, CDCl3) ı 38.2, 113.8 and 90, 114.0 (JC-F 21.5 Hz), 115.4 and 115.8 (JC-F
21.5 Hz), 117.2, 118.2, 122.7, 124.31, and 124.32 (JC-F 2.8 Hz) 124.7, 127.3, 129.3,
129.5, 130.1and130.2 (JC-F 8.3 Hz), 131.4, 131.7 (JC-F 19.4 Hz), 147.8, 147.9 (JC-F
6.2 Hz), 149.2, 161.7, 165.1; EIMS, 70 Ev, m/z: 376 (M+). 14-(2-Nitrophenyl)-
14H-dibenzo [a, j] xanthene (Table 1, entry 6): 1H NMR (300 MHz, DMSO-d6)
ı 10.28 (1H, d, J = 6 Hz), 9.76 (1H, d, J = 9 Hz), 7.97–7.66 (4H, m), 7.40–7.01 (10H,
m), 5.75 (1H, s); 13C NMR (300 MHz, DMSO-d6) ı 32.7, 118.0, 118.3, 123.2, 124.5,
125.1, 125.3, 127.7, 128.0, 129.3, 129.6, 129.9, 130.6, 132.2, 132.6, 134.4, 141.2,
147.5, 149.8; EIMS, 70 Ev, m/z: 425.25 (M+) + Na+. 14-(3-Bromophenyl)-14H-
dibenzo [a, j] xanthene (Table 1, entry 7): 1H NMR (300 MHz, DMSO-d6) ı
8.71 (2H, d, J = 9 Hz), 7.94 (4H, d, J = 9 Hz), 7.81 (1H, s), 7.69–7.67 (3H, m), 7.58
(2H, d, J = 9 Hz), 7.48 (2H, t), 7.18–7.10 (2H, m), 6.76 (1H, s); 13C NMR (300 MHz,
DMSO-d6) ı 155.8, 153.1, 148.6, 148.5, 135.1, 134.6, 131.3, 131.2, 130.9, 129.8,
129.2, 129.1, 128.2,127.6, 125.2, 123.8, 122.3, 120.2, 118.2, 117.3, 109.2, 36.6;
EIMS, 70 Ev, m/z: 436 (M+). 14-(4-Nitrophenyl)-14H-dibenzo [a, j] xanthene
Acknowledgements
JM and AM thank CSIR, New Delhi for their respective senior
research fellowships. This work is partly funded by Nanoscience
and Nanotechnology Initiative of DST, New Delhi.
References
[1] J.K. Norskov, T. Bligaard, B. Hvolbaek, F. Abild-Pedersen, I. Chorkendorff, C.H.
Christensen, Chem. Soc. Rev. 37 (2008) 2163–2171.
[2] J. Climent, A. Corma, S. Iborra, Chem. Rev. 111 (2011) 1072–1133.
[3] A.H.D. Andressa, F.F. Sousa, S.B. Honorato, A.P. Alejandro, J. Mendes, F.W. de
Sousa, A.N. Pinheiro, J.C.S. de Araujo, R.F. Nascimento, A. Valentini, A.C. Oliveira,
J. Mol. Catal. A: Chem. 315 (2010) 86–98.
[4] K. Soni, B.S. Rana, A.K. Sinha, A. Bhaumik, M. Nandi, M. Kumar, G.M. Dhar, Appl.
Catal. B: Environ. 90 (2009) 55–63.
[5] P.R. Schreiner, Chem. Soc. Rev. 32 (2003) 289–296.
[6] G. Bredig, P.S. Fiske, Biochem. Z. 46 (1912) 7–23.
[7] G. Yang, Z.W. Yang, L.J. Zhou, R.X. Zhu, C.B. Liu, J. Mol. Catal. A: Chem. 316 (2010)
112–117.
[8] A.E. Allen, D.W.C. MacMillan, J. Am. Chem. Soc. 132 (2010) 4986–4990.